
1

Technical Report fl 86-15

December 1986

hh

-ow- 4+

by

Kyung-Goo Doh James M. Bieman Albert L. Baker1

DEPARTMENT OF COMPUTER SCIENCE
IOWA STATE UNIVERSITY/AMES, IOWA 50011

Generating A Standard Representation

From Pascal Programs

-WHMXJ-
-O-MO-

Technical Report #86-15

December 1986

!Dr. Baker’s current research has been supported in part by the Shell Companies Foundation, Inc.

by
Kyung-Goo Doh James M. Bieman Albert L. Baker1

Generating A Standard Representation

From Pascal Programs

Address Correspondence to Dr. James Bieman, Department of Computer Science, Iowa State Uni­
versity, Ames, 1A. 50011, (515)294-4377.

5

Abstract

ii

Software measures and software tools are often defined in terms of a particular,

limited programming language. For example, a number of software measures are de­

fined only for structured programs, and several approaches to program testing and

debugging are defined using a specific simple language. As a result, implementing tools

and measures so that they can be applied to “real” programs in “real” programming

languages is difficult. Further, independent evaluation and comparison of measures

and tools is difficult. In a supporting report, a standard representation of imperative

language programs is formally described (Technical Report #86-17). The standard

representation is independent of the syntax of any particular programming language,

and supports the definition of a wide range of tools and measures. Additionally, the

standard representation masks the actual program semantics. Thus the standard repre­

sentation provides a vehicle by which large volumes of industrial software can be made

available to researchers while protecting the proprietary nature of the programs.

This report describes the implementation of a mapping program which inputs 1985

ISO Standard Pascal programs and generates the corresponding standard representa­

tion. The implementation uses the YACC and LEX compiler generator tools and has

been thoroughly tested. Design details, testing strategy, source code, test cases, and a

user’s manual are included in the report.

Contents

Introduction 11

2 A Standard Representation 2

7

73.1

3.2 9

3.3 10

3.4 12

3.4.1 13

3.4.2 14

3.4.3 24

3.5 26

3.5.1 26
3.5.2 26

3.5.3 30
With Statement 3.5.4 31

Predefined Procedures and Functions 3.6 31
Operator and Operand Counts3.7 34

4 Testing Strategy 37

Conclusion5 40t

References 42

Appendix A. Source Program for StandardRep 43

iii

3 Implementation

Using YACC and LEX

Overall Program Structure

Interface Component of a UnitRepType

UFS component

Structures built by Statements

Building the Representation of Basic Blocks

Dealing with goto statements

Variables in DefinitionType’s and ExpType’s . . .

Simple Data Types

Structured Data Types

Value Parameters

100Appendix B. Test Programs and Results

203Appendix C. User’s Manual

A

4

iv

List of Figures

131

15-162

193

234

List of Tables

Mapping of Pascal Predefined Procedures1 33

>

v

Example : Representation of Nodes and Edges

Structures built by Pascal Statements

Examples: Sequencing

Examples: Nesting..

Introduction1

A

1

The StandardRep\i] is a representation of imperative programs defined using an ab­

stract data type approach. This representation provides a language independent basis

for rigorous definitions of software tools and measures. While it hides the semantics of

the actual programs, it preserves the control flow, data flow, and integration structures

of a program unit. The protection of the semantics of programs allows us to use the

StandardRep as a basis of a strategy for collecting large volumes of data on actual

source programs. Such data can be used by software engineers interested in software

tools and measures. In this project, we implement a StandardRep generator which takes

the ISO Standard Pascal as an input and produces the corresponding StandardRep as

an output. The generator translates a Pascal source program into a textual form of

the StandardRep.

For this implementation, we use a software development tool, YACC;2] and LEX[3],

The C programming language|4| is used for supporting routines in order to be consistent

with YACC and LEX. During a bottom-up parse, the translator constructs a data

structure which represents the actual StandardRep. At the output generation phase,

the data structure is searched through to produce the textual form of the StandardRep.

Furthermore, we can easily derive an encoded form of this StandardRep from the data

structure produced by the translator. The mapping strategy used throughout the

implementation is based on |li. The version of Pascal used in this implementation is

the 1985 ISO Pascal Standard^ . However, the implementation is designed so that it

can be modified easily for non-standard features if needed.

In the next section, we present the StandardRep of Bieman, et. al. |lj. In section 3,

we present the algorithms used in this implementation for generating the StandardRep

from Pascal programs. The data structures themselves could be the input of the next

stage of analysis tools for measures research. The algorithms are described abstractly

A Standard Representation2

In

in

4

JThe material of this section is largely borrowed with permission from ■ I j.

2

this section1, we describe the definition of standard representation as it appears

[1]. The standard representation incorporates the concepts that are common to

imperative language programs -control flow, data dependency, procedure interfaces,

and the usage of operators and operands.

Program unit control flow is modeled by the familiar control flow graph in w hich

nodes represent basic blocks. We provide a few definitions which are helpful in under­

standing the formal specification of the standard representation.

Definition 2.1 A Jlou’graph (1 (,V. A'.sJ) is a directed graph with a finite nonempty

set of nodes a finite nonempty set of edges £’, a start node .s ■ ,V. and a terminal

node t t N. The start node .s is the unique node of N with indegree zero. The terminal

node t is the unique node of N with outdegree zero. Each node r v .V lies on some

path in G from s to t.

in a Pascal-like language form. In section 4, we discuss the testing strategy used to

demonstrate the correctness of the generator. In the last section, we summarize the

overall project and possible future work. Appendix A contains the actual code of the

generator which consists of YACC and LEX specifications with their semantic routines,

and the supporting C routines. In Appendix B, we present the test program segments

we describe in Section 4 and the results. The purpose of inclusion of the test results in

the Appendix is to help users understand how< the StandardRep works and how Pascal

programs are represented as the StandardRep. In Appendix C, we present the user’s

manual of the StandardRep generator.

A

*

Type Definition 1

StandardRep set of UnitRepType

3

Definition 2.2 A sequential block of code in a source program P is a subsequence of

tokens from P that is always executed in order starting with the first token and ending

with the last token.

Program unit data flow is represented as the sequence of definitions and references

in the nodes that represent basic blocks. The following definitions are derived from

those by Hecht [6],

Definition 2.5 A variable reference or variable use is a sequence of tokens in a source

program that, when executed, references the value stored in a program variable.

Consider a program statement of the form /I : - (.X + Y) * Z. The variable .4 is defined

by the statement, and the variables A', and Z are referenced.

We define the representation in terms of sets, sequences, tuples, reals, integers,

booleans, and operations on these primitive types. The specification language has type

declarations with syntax similar to Pascal types. For a detailed description of the

specification language used, see |7|. To represent an entire program, we first break the

program into its unit-level components, such as procedures or functions in a Pascal-like

language. Each procedure or function has its own internal structure and a specific way

in which it interfaces with the rest of the program. Thus we have:

Definition 2.3 A basic block is a maximal length sequential block of code.

Definition 2.4 A variable definition is a sequence of tokens in a source program that,

when executed, can (potentially) modify the value stored in a program variable.

Type Definition 2

UnitRepType

.4

Type Definition 5

Edge Type

4

Type Definition 3

/leader Type

ordered pair)
Interface: HcaderType,
UFS: UnitFlowStructure)

ordered pairf
FromNode: NodelD.
ToNode: NodelD)

triple)
UnitName: UnitID,
FormalParams: sequence of VarlD,
Globals: set of VarlD)

Type Definition 4

UnitFlowStructure f-lupltf
Nodes: set of NodeType.
Edyes: set of Edge Type.
Start: Node ID.
Terminal: NodelD)

The UnitFlowStructure closely resembles a conventional control flowgraph with informa­

tion concerning data dependency, unit interconnection, and software science measures

[8] embedded within the nodes.

The Interface must contain the unique name of the program unit and the information

necessary to determine the data interface with the rest of the program. Thus the

Interface has three components — the procedure or function name, the list of formal

parameters, and the set of global variables which are referenced or defined by the

program unit.

A node must contain information about the

A

A definition of a variable occurs when either

or the variable is defined by a procedure call.

5

corresponding basic block. A node must also contain information about the procedures

and functions that are referenced in it. We retain the distinction between references

Type Definition 9

OperandCount

Type Definition 6

Node Type

Type Definition 8

OpcratorCounl

ordered pair/
Opcounts: set of OperatorCount,
Opandcounts: set of OperandCount)

ordered jxiirf
Ope ra t or Na me: Ope rat or ID.
Occurrences: integer)

ordered pair/
OperandName: Operand!!),
Occurrences: integer)

4-tuple(
NID: Node ID,
LocalDefinitions: sequence of DefinitionType,
Predicate: EipType,
Counts: Halstead InfoType)

uses and definitions of variables within the

Type Definition 7

Halst eadlnfo Type

an assignment is made to that variable,

that are used for definitions and references in predicates. We also include operator

and operand counts from each basic block. These counts are used for software science

measures|8) and are not accurately obtainable from the other node information. Thus

our characterization of a node consists of four parts: a node identifier, a list of variable

definitions, a list of predicate uses, and the software science information.

Type Definition 10

DefinitionType Simple Definition | ProceduralDefinition

particular sequence of references. The

Type Definition 13

4Exp Type. sequence of ExprComponent

Type Definition 14

ExprComponent VarlD | ConstID j FunctionUse

6

Type Definition 11

SimpleDefinition

Type Definition 12

ProceduralDefinition

ordered pair)
DefinedVariable: VarlD,
Expr: ExpType)

ordered pair(
Proc Name: Unit ID,
Actual Params: sequence of ExpType)

A SimpleDefinition has two components: the name of the variable being defined, and

the list of items referenced in the definition. A procedure call is represented by the

procedure’s name and the sequence of actual parameters. The representation of the

procedure cal), combined with the control flow and data dependency information in the

UnitFlowStructure of the called procedure, makes it possible to deduce potential data

dependencies resulting from the call.

For our purposes, an expression results in a

order is determined by the parsing.

Each item referenced in a SimpleDefinition may have any of three forms: the item may

be a variable, a constant, or a function call.

Definition 2.6 The cyclomatic number V of a program unit is:

operation V(UFS: UnitFlowStructure): integer

| Edges(UFS) j - | Nodes(UFS) | + 2post: V

Implementation3

K

Using YACC and LEX3.1

7

Type Definition 15

Function Use

YACC is a parser generator, that is, a program for converting a grammatical specification

of a language into a parser that will parse statements in the language. YACC provides

For more details about the definitions of measures and tools in terms of the Stan­

dardRep, see |1|.

ordered pairf
FunctionName: UnitID,
ActualParams: sequence of ExpType)

We now present a definition of the cyclomatic complexity measure|9j in terms of

the StandardRep as an example. The ADT approach is also used to present the def­

inition of cyclomatic complexity. We define the cyclomatic number of a UFS of type

UnitFlowStructure as an abstract operation on the ADT UnitFlowStructure as follows:

In this section, we describe the StandardRep generator which takes a syntactically

correct Pascal program as an input and produces the corresponding StandardRep as

output. The actual implementation is given in Appendix A. The StandardRtp produced

by the generator is in a textual form which uses the set. sequence, and tuple notation

of Section 2. For this implementation, we use the software development tools, YACC|2|

and LEX|3j.

The appropriate grammar is selected, in this case the 1985 ISO Standard Pascal 5 .1.

2.

A lexical analyzer is prepared by using LEX.3.

4. A

5.

8

A controlling routine which calls the parser and the output generator is writ­

ten. The parser, the lexical analyzer, output generating routine, and the control

routine are compiled and linked together, and executed.

A routine for writing out the Standard Rep is prepared. This routine searches

through the data structure built by the parser ami produces the textual form of

StandardRep.

Each production rule is augmented with a semantic action a statement of what

to do when a particular grammatical form is found during parsing. This part is

written in C code and defines how to construct data structures for the Standard-

Rep.

a way to associate meanings with the components of the grammar. Thus, as parsing

takes place, the meaning associated with the grammar is evaluated. YACC accepts as

input the grammar and the semantic actions, and produces a parsing function, named

yyparse, and writes it out as a file of C code, named y.tab.c. The C code produced

by YACC is an LALR(l) parser. The operation of this program is to call repeatedly

upon the lexical analyzer for tokens, recognize the grammatical structure in the input,

and perform the semantic actions as each grammatical rule is recognized. The lexical

analyzer is created by LEX. The LEX source file is a specification of the lexical rules of

the language to be parsed, using regular expressions and fragments of C to be executed

when a matching string is found. LEX translates the specification into a routine, called

yylex. The code produced by LEX recognizes these expressions in an input stream and

partitions the input stream into strings matching the expressions. The stages in using

YACC for development of this generator are as follows:

Overall Program Structure3.2

9

7. A shell program which runs the preprocessor and the StandardRep generator

sequentially is prepared.

6. A preprocessor which converts all the upper-case letters into lower-case letters in

the input Pascal program is written. The preprocessor also removes comments

from the input program. The output of the preprocessor becomes the input of

the lexical analyzer.

The remainder of Section 3 describes the mapping strategy and algorithms employed

in this implementat ion.

program one;
procedure a;

procedure b;
begin . . . end;{b}

begin . . . end; {a}
procedure c;

begin . . . end;{c}
begin . . . end {one}.

The StandardRep for a Pascal program is a set of procedure representations - with

one procedure representation (of type UnitRepType) for each procedure or function,

including the main procedure. For example, a Pascal program of the form:

has a StandardRep of the form {ONE, A, B, C'} where ONE.A.B. and C are of type

UnitRepType and represent the individual procedures. Each user-defined procedure or

function in a Pascal program is treated as an individual program unit with its own

Unit RepType\l].

Since procedures and functions in Pascal Program can be nested within each other,

we need to use a stack in order to generate a set of UnitRepType s. We use a global

• program

• procedure

• function

Interface Component of a UnitRepType3.3

Pascal Code: program p (input,output)1.

(p, (input ,ou I put', { })Interface:

A
Pascal Code: procedure q (a: integer; b.c: real;2.

real; b.c: integer): real3.

10

car d: char)

Thus, the top of the unitstack always represents the procedure or function currently

being processed. When the parser finishes processing each procedure or function unit,

the top of the unitstack is popped off and added to the set of Unit RepType’s.

Pascal Code: function r(function a:

stack named unitstack which has a UnitRepType as an element. The unitstack grows

everytime the parser processes the following three tokens:

The UnitRepType for each Pascal program (main procedure), procedure, and function

has an Interface component and a UFS component. The Interface component models

the connections between an individual procedure and the rest of the program. Recall

from Section 2 that the Interface consists of a UnitID, a Formal Params sequence, and a

Globals set. The following examples contain segments of Pascal code and the Interface

component of the representation! 1].

Interface: (q, (a,b,c,d), {vi, v>,..., v„}),

where Vj, v2,..., v„ are the VarlD's of all non-local variables that are refer­

enced or set in the body of procedure q.

Interface:

A

11

A FormalParams sequence is just a sequence of identifiers. However, since the

sequence of definitions in the Start node in the ProgramFlowStructure represents the

initialization of variables, i.e., the assignment of call-by-value parameters to local vari­

ables in Pascal, we need to distinguish value parameters from variable parameters. We

use this information when we generate a simple definition in the Start node. Hence,

we maintain another sequence of VarlD which retains only value parameter identifiers.

Then these value parameters can be referenced at the time of we generate the Start

node.

Type : set of TypeTable,
Var : set of DecListType)

MemoryTable = 4-tuple(
Labels : set of LabelTable.
Const : set of ConstID,

A new MemoryTable is pushed into memtab when entering each procedure unit and

popped out when exiting each procedure unit. The top of the stack memtab represents

In order to detect global definitions and references, we use a global stack named

memtab which can also be used for finding the destination nodes of goto statements,

distinguishing buffer variables from pointer variables, finding the object type of pointer

variables, etc. Each item on the stack memtab is of type MemoryTable. The Labels

component of the MemoryTable maintains information about goto’s. The Const com­

ponent of the MemoryTable retains a set of constant identifiers defined. The Type

component of the MemoryTable retains a set of type identifiers along with their types

defined. The Var component of the MemoryTable retains a set of variable identifiers

declared and their types. The ADT representation of the MemoryTable is as follows:

(r, (a, b,c,rreturn)>{})>
assuming r has no global definitions or references.

identifier by the lexical analyzer,

• not in the set of variable declarations of the top of the memtab,

• not in the set of constant definitions throughout the memtab, and

• in the set of variable declarations of at least

except the top of the memtab stack.

UFS component3.4

4

12

In the following discussion, we explain how basic blocks and control flow between

basic blocks are constructed. First, we present the structure built by each statement.

All global identifiers are added to the Globals in the the Interface component of Uni-

tRepType.

one MemoryTable in the memtab stack

• recognized as an

The UFS component of the representation models the intra-procedural structure of

the program'l]. From Section 2, the UFS = {Nodes. Edges, Start, Terminal) has the

basic structure of a flowgraph, where Nodes represent basic blocks and Edges represent

possible control flow between Nodes.

In this implementation, we build the UFS as a 3-tuple(Nodes .Edges . ValueParame-

ters). The Nodes are represented as a linked list of NodeType's. and the Edges are

represented as a linked list of EdyeType's. ValueParameters, which is a list of VarlD's,

stores the value parameter identifiers of a procedure unit. Later, the value parameters

are used to build a Simple Definition in the Start node. Figure 1 shows how Nodes and

Edges are represented in the actual data structure.

local declarations of the current unit, while the rest of the stack represents items that

may be referenced now legally. Any identifiers which satisfy the following conditions

are treated as global definitions or references. Such a global identifier is:

Nodes1

X31 2

2 Edges

■FIX2 2 1]

3

Graphcal Form Actual Form

Figure 1: Example : Representation of Nodes and Edges

Structures built by Statements3.4.1

simple statement : assignment statement and procedural statement1.

//"statement without e/se clause2.
A

//"statement with else clause3.

4. case statement

5. repeat statement

while statement6.

13

Then we discuss the algorithms to construct representations of basic blocks and control

flow.

Each grammar rule for statements returns a structure and passes it up to the ancestor

in the parse tree. Pascal statements which return different structures are categorized

as follows:

for statement7.

8. goto statement

label statement9.

• a sequence of statements, or

Building the Representation of Basic Blocks3.4.2

In

5

14

• nested statements
■>

In the next section, we describe the algorithms used to represent the basic blocks and

the control flow between them.

Exceptions occur in the following cases:

a bottom-up parse, we can view the partition of statements into basic blocks as

a process of combining structures returned by descendents and passing the resulting

structure up to the ancestor in the parse tree. Since we are using YACC. we explain

the algorithms to build the representation of basic blocks by employing this concept.

The returned structures of the right-hand side of the grammar rules for statements are

combined or linked by appropriate algorithms in the semantic rules when reduced by

the left-hand side of the rule.

The generator must work for all possible combinations of sequences of statements.

Algorithm Connectionsequence takes two inputs, nl and n2. which are lists of Hode-

Type’s, and returns a new list of llodeType’s. This algorithm is used for all combinations

of sequencing. For most cases, we can build a new combined list just by merging the

last node of the first list and the first node of the second list as shown in Figure 3(a).

The structure each statement returns is described graphically in Figure 2. These state­

ments are combined and linked by appropriate algorithms appearing in the semantic

rules. Pascal constructs used to combine statements can be classified as either:

simple statement

if statement (without else) if statement (with else)

case statement repeat statement

C

S Ss

A

Figure 2: Structures built by Pascal Statements(cont.)

15

or a sequence of simple statement

S S s

while statement for statement

I

C

S

Symbol Notation:

predicate nodeC

statement or statement sequence

empty node
5

initialization node lor for statement1

Figure 2: Structures built by Pascal Statements

16

S

1. a simple statement followed by while statement.

2. a simple statement followed by repeat statement.

4. any statement followed by goto statement.

5. a goto statement followed by any statement.

A

17

3. any statement followed by a labelled statement or a sequence of statements where

the first is a labelled statement.

In the first three cases, we can build a new combined list by linking two lists as shown

in Figure 3(b). The last two cases are rather complex and need additional explanations.

We consider these cases separately in a later section. The algorithm ConnectionSe-

quence is as follows:

function Connectionsequence(nl,n2:list of HodeType’s):list of IIodeType’s;
begin

if n2 is nil then (* n2 is goto statement *)
GotoFlag(Last(nl)) := OH;

else if GotoFlag(Last(nl)) = ON then
(* Last(nl) is goto statement *)
begin
GotoFlag(Last(nD) := OFF;
append n2 to nl;

end
else if n2 starts with repeat, while, or label statement

and Last(nl) is empty then
begin

add an edge from Last(nl)
to First(n2);

append n2 to nl;
end

else if nl has only one HodeType then
(* a simple statement or a sequence of simple statements *)
begin

• c : node that contains conditional expressions

• e : last node which is always empty

• 5 : node that contains initialization part in for statement

18

if-then statement :
function ifthen(c,s,e:list of NodeType ’ s): list of IIodeType’s;

• s : a list of nodes that returned by nested statement (also sl...,sn)

Now we consider nested Pascal statements. A simple statement, a sequence of simple

statements, if-then, if-then-else, case, repeat, while, and for statements, and any se­

quence of the above statements(compound statement) may be nested in any of if-then,

if-then-else, case, repeat, while, and for statements. What the structure each state­

ment generates looks like is already seen. In order to describe algorithms for nesting,

we denote each node in the structure as follows:

Algorithms for combining the structures returned by each Pascal statement in case of

nesting are as follows:

move all contents of First(n2) to nl;
remove First(n2) from n2;
append n2 to nl;
update edges connected with First(n2) to nl;

end
else
begin

move all contents of Last(nl) to First(n2);
remove Last(nl) from nl;
append n2 to nl;
update edges connected with Last(nl) to First(n2);

end;
return nl;

end.

(a), sequence of while statement and //"statement

S

I (b). sequence of simple statement and while statement

Figure 3: Examples: Sequencing

19

S

S s

s

s

*/

20

begin
if s is not empty then
begin

add an edge from c to First(s);
if GotoFlag(Last(s)) = OFF then

add an edge from Last(s) to e;
end;

add an edge from c to e;
return Append(c.Connection!(s,e)) ;

end;
if-then-else statement :
function ifthenelse(c,si,s2,e:list of ModeType’s):list of NodeType’s;
begin

if si is not empty then
begin

add an edge from c to First(sl);
if GotoFlag(Last(sl)) = OFF then

add an edge from Last(sl) to e;
end;

if s2 is not empty then
begin

add an edge from c to First(s2);
if GotoFlag(Last(s2)) = OFF then

add an edge from Last(s2) to e;
end;

return AppendCc,ConnectionI(sl,Connection(s2.e)));
end;

case statement ;
function case(c,sisn,e:list of ModeType’s):list of HodeType’s;

var new : list of HodeType’s
begin

add edges from c to First(sl) First(sn)
if si is not empty; /* for all i = l,..,n

add edges from Last(sl) Last(sn) to e
if GotoFlag(Last(si)) = OFF; /* for all i = 1,,n */

new := ConnectionIK . . . (Connection!!(si ,s2) ,s3) sn) ;
return Append(c.Connection!(new,e));

end;

A

(* nl is goto statement *)

21

function Connection!(nl,n2:list of NodeType’s):list of NodeType’s;
begin

if nl is nil then
return n2;

else if Last(nl) is not empty then
begin

append n2 to nl;
return nl;

function Append(nl,n2:list of NodeType’s):list of NodeType’s;
begin

append n2 to nl;
return nl;

end;

repeat statement :
function repeat(s,e:list of NodeType’s):list of NodeType’s;

begin
add an edge from Last(s) to First(s);
add an edge from Last(s) to e;
return Connection!!(s,e);

end;
while statement :

function while(c,s,e:list of NodeType’s):list of NodeType’s;
begin

add an edge from c to Start(s);
add an edge from Last(s) to c;
add an edge from c to e;
return Append(c.Connection!!(s,e));

end;
for statement :

function for(i,c,s,e:list of NodeType’s):list of NodeType’s;
begin

add an edge from i to c;
add an edge from c to First(s);
add an edge from Last(s) to c;
add an edge from c to e;
return Append(i,Append(c,Connection!I(s,e)));

end;

(* nl is goto statement *)

(* n2 is goto statement *)

«

22

end
else
begin

move all contents of Last(nl) from nl;
remove Last(nl) from nl;
append n2 to nl;
update edges connected with Last(nl);
return nl;

end
end.

function ConnectionII(nl ,n2: list of ModeType’s) : list of lIodeType’s;
begin

if nl is nil then
return n2;

else if n2 is nil then
return nl;

else if nl has only one
(* a simple statement
begin

append n2 to nl;
return nl;

end
else if Last(nl) is not empty then
begin

append n2 to nl;
return nl;

end
else
begin

lastnode := Last(nl);
remove Last(nl) from nl;
move all contents of lastnode to Last(nl);
update edges connected with lastnode;
append n2 to nl;
return nl;

end
end.

NodeType then
or a sequence of simple statements *)

(a), if statement nested in while statement

A
(b). if statement nested in repeat statement.

Figure 4: Examples: Nesting

23

S

S

s

s

3.4.3 Dealing with goto statements

t

From : set of NodelD,

24

LabelTable = 4-tuple(
Label : LabelType.
To : NodelD,

The higher-level of the parse tree does not know whether the returning structure from

the descendents is from a goto statement or not until it receives the structure from

the descendent which may contain a goto statement. Since the parser needs to distin­

guish a goto statement from the other statements, the goto semantic routine returns a

null pointer while every other statement always returns a non-null pointer to a list of

Node Type’s.

When a goto statement is parsed, an edge is added from the node having the goto

statement to the destination node. However, since a goto statement does not generate

a node, the edge should be connected from the most recently generated node. The

most recently generated node can always be referenced by a global variable ndptr. At

the time the goto statement is parsed, a GotoFlag component of ndptr is set to ON to

denote that the node ends with a goto statement. By referencing this flag later in the

upper-level of the parse tree, the parser knows if the node ends with a goto statement.

Unfortunately, this rule does not always work. The exceptions will be discussed later

in this section.

In Pascal, a label must be declared. During the parse of the label declaration section

we construct a LabelTable for each declared label.

Figure 4 demonstrates these algorithms using simple examples. Details about dealing

with goto statement are explained in the next subsection. For the details of the semantic

actions and supporting routines, see the actual code in Appendix A.

Dead : set of NodelD)

A

25

At this time, only the Label component is initialized and the other components are

undefined or empty. This list of LabelTable is attached to the memtab. When the

la.be! statement itself is parsed, the generated NodelD is assigned to the To component

of LabelTable. If a goto statement is parsed before the corresponding To component

of LabelTable is set, i.e., in the case of a forward branch, the NodelD from which the

goto branch starts is added to the component From. Later, when the label statement is

parsed, edges from From to To which is just generated are added. If a goto statement

is parsed, after the corresponding label statement, i.e., in case of backward branch, an

edge from last generated NodelD to To.

The edges which are already in the list of EdgeType's may be modified during the

construction of the structures which represent basic blocks because the existing nodes

can be merged by the operations of the basic block construction. Thus the node whose

NodelD is already stored in the From component might be merged with another node

before the label statement is parsed. Then the From component contains a NodelD

of a non-existant node. Therefore, a “dead” NodelD is added to Dead component to

indicate that the NodelD does not exist anymore.

This process works for most cases except when only a goto statement is in either

an e/se-clause of an if-then-else statement or in a case statement. If an e/se-clause

consists of solely a goto statement, then the From node of the branching edge should

be the node containing conditional expressions. However, according to the above rule,

the From node of the branching edge must be the last node of then-clause since ndptr

points to it at the time of parsing e/se-clause. Thus, we have to treat a goto state­

ment differently when it occurs in an e/se-clause or in a case statement. To solve this

problem, we maintain a global stack named brrootstack which has BrRootStackType

as an element. BrRootStackType is a 2-tuple(NodePointer. Flag). Everytime the

parser processes an if-then-e/se or a case statement, a new BrRootStackType is pushed

Variables in DefinitionType’s and ExpType’s3.5

Simple Data Types3.5.1

Structured Data Types3.5.2

26

The value of an individual DefinitionType depends in part on the types of Pascal

variables used in the statement represented. In this subsection, we describe the repre­

sentation of Pascal simple statements that use simple data types and structured data

types [1] as well as their implementation.

The representation of Pascal statements that contain variables of structured types is

not so simple, because structured variables usually cannot map directly to VarlD's.

We describe the mapping for each type of Pascal structured variable and its implemen-

Simple Pascal variables include variables of type real, integer, boolean, and char. Sets,

enumerated data types, and subrange types are also considered simple data types in

defining the mapping of Pascal to the StandardRe.p. Variables of these simple types

map directly to VarlD's. For example, consider a Pascal assignment of the form y := x

+ y, where y and x are simple variables. The assignment maps to a SimpleDefinition of

the form (y, (x, t/)). The Pascal procedure invocation p(x, x + y) maps to the Procedural

Definition (p, ((x'/, (x, y)}).

onto brrootstack. Initially, a NodePointer points to the node having the conditional

expressions and the Flag component is set to VALID. If any other statements except

a goto statement occurs in the e/se-clause, ndptr is used for branching. On the other

hand, if the Flag remains as VALID, i.e., only a goto statement is in an e/se-clause, the

NodePointer of brrootstack is used. In the case of a case statement, we can apply

the same method.

»

27

tation.

The structured variables include array variables, record variables, pointer variables,

and file variables. Since these variables are not directly mapped into VarlD, we need a

data structure to hold the structured variables in order to use them appropriately in the

future. In this implementation, ExtraldType is designed for this purpose. Extrald-

Type is 2-tuple (Arrayindex,Extras) in which Arrayindex is a list of ExpType’s and

Extras is a list of strings. Index variables of the array variable are stored in Array In­

dex. Thus as long as this list is not null, the variable represented by ExtraldType is

an array variable. Extras keeps field-identifiers of record variables and f of pointer

variable and buffer variable. Thus no f at the head of the Extras means that the vari­

able is not a pointer or buffer variable. The global stack memtab is used to distinguish

pointer variables from buffer variables. Now we describe the mapping for each type of

Pascal structured variables.

Array variables: In a static analysis, the actual cell that is defined by an assign­

ment A[iJ := Z cannot be determined. In the StandardRep, an entire array is

represented with one VarlD. The index variable, i in the above example, is al­

ways a referenced variable. Since an indexed array assignment only modifies one

element, the redefined array is dependent on its last state. Therefore the array

itself is referenced. The above array assignment maps to the SimpleDefinition

(A,{A,i,Z)). The implementation of the mapping of array variables to Slan-

dardRep is relatively simple. The array itself and all elements of Arrayindex

are inserted in front of the list of ExpType representing on the right-hand side of

assignment statement.

Record variables: Following the strategy used for arrays, one VarlD is used to rep­

resent an entire Pascal record. Thus, a Pascal variable reference A.b is mapped

to the same VarlD as A.c. An assignment of the form A.c := Y maps to the

<

28

Now we describe the representation of some Pascal statements using the above

declarations:

integer;
fieri: Cptr

end;
var r: Cptr;

SimpleDefinition (A, (A,y)). We map records with fields that are arrays as

follows: the assignment statement :— 7 maps to the SimpleDefinition

(4, (A, i, j, 7)). The implementation of the mapping of record variables is similar

to that of array variables. The record variable itself is inserted in front of the list

of ExpType representing on the right-hand side of assignment statement.

• new(x)

SimpleDefinition's are used to represent predefined procedures such as the

new(x) command: (r, ()). (C, (z, C}), where C represents the collection of

Pointer based objects: In Pascal, pointers can only reference objects of a specified

type that are dynamically allocated. Pointer values are either nil or are set via the

new procedure which allocates the storage for the object referenced and sets the

pointer value. We treat the collection of objects that a pointer may reference as

one VarlD in a manner similar to that used to represent array variables. During

a static analysis we cannot determine which objects are referenced by a pointer or

even how many such objects will exist at run time. However, in Pascal programs

we can limit the range of a pointer reference to objects of a specified type that are

allocated dynamically. Any variable reference made using a pointer refers to the

collection of objects of the declared type that the pointer may possibly reference.

Consider the following Pascal declarations:

type Cptr = j C;
C - record

v:

File variables:

29

• x := x'f.next

This is another single SimpleDefinition (x,(x,C)).

• x\.v := 7

This statement maps to a single SimpleDefinition (C, (z, C, 7)). We are again

using the VarlD C to represent the collection of objects that the pointer may

be referencing.

To find an object type, C, of a pointer variable, we also have to search through
the global stack memtab from the top to the bottom. The algorithm for finding
C is as follows:

function FindPointerObject(varid:VarID):VarID;
var typeid : VarlD;
begin

typeid := type of varid in Var component;
if typeid is preceded by ~ then

return removeuparrow(typeid)
else

begin
while typeid is preceded by * do

typeid := type of typeid in Type component;
return removeuparrow(typeid);

end;
end;

The function removeuparrow takes a type identifier which includes an uparrow

as an input parameter and returns the identifier without the uparrow.

objects that x may reference. The actual implementation of this approach

is discussed in Section 3.6.

Every file variable F has an associated, implicitly declared buffer

variable F j. In the representation of file primitive procedures with a file variable

argument, the implicit buffer variable is included explicitly in the representation.

Value Parameters3.5.3

t

30

Therefore, in our implementation, we represent the write statement, write(F,a,b)

as the SimpleDefinition’s (F, (F, a, b)), (F), (6)). The other possibility of the

representation of the write statement is discussed in [1]. The often implicit textfile

program parameter Output and the buffer variable Output^ will be explicitly

included as a parameter in the representation (and analogously for Input). In

assignment statements that reference or set the value of the buffer variable Ff, the

buffer variable itself is modified or set. Thus, the representation of “X f” depends

upon whether X is a pointer or file variable. Buffer variables in assignment

statements are treated the same way as simple variables.

Any initialization of variables is represented by the sequence of definitions in the Start

node in the ProgramFlowStruclure. In Pascal, these definitions include the assign­

ment of call-by-value parameters to local variables. Therefore, the Start node in the

UnitFlowStructure of procedure Q(a: integer, var b: integer) has the Simple Definition

(a1,{a)). All references to a in the procedure are represented by

In our generator, value parameters of a procedure unit are detected when parsing

the formal parameter list. However, at the time the value parameters are parsed,

the corresponding unit block has not been defined. Hence, we need a data structure

which saves the value of the parameters of the procedure unit. To do this, we have an

additional list only for value parameters in FormalParams of HeaderType. This list is

available via global stack unitstack during parsing the procedure block to recognize

if an identifier is a local variable.

With Statement3.5.4

Predefined Procedures and Functions3.6

31

WithVarType = ordered pair(
ID : VarlD.
Extras : ExtraldType)

The with statement in Pascal allows a convenient shorthand. After a record variable

appears in a with statement’s variable list, its field names denote fields for the remainder

of the with statement’s action.

Therefore, we need to distinguish field names from the ordinary variables in the body

of the with statement. To do this, we maintain a global stack named withvarstack.

The withvarstack has WithVarType as its element. The ADT representation of With­

VarType is as follows:

In addition to those described previously, Pascal includes a number of primitive or

predefined procedures and functions. The StandardRep could include a Unit RcpType

for each of the primitives used in the program. However, predefined procedures and

functions represent language primitives. Predefined functions, e.g., sin and abs, are not

conceptually different from operators. The program units that implement predefined

When entering a with statement environment, every with variable name is pushed

onto the withvarstack. Hence, when withvarstack is not empty, we examine each

identifier parsed to determine whether it is an ordinary variable or a field of a record

variable which is one of the elements of withvarstack. If the identifier examined is

a field of record variable in withvarstack, then we have to use the record variable

identifier instead of field identifier. When exiting with statement environment, the

withvarstack is popped to restore the earlier environment.

• A component points to the same object as p:

• A component points to a different object than p:

1

32

newfpj.ptrj (T, (T)), (C,

where C is an object to which ptr points.

newfpj.nextj

where T is an object to which p points.

functions and procedures are part of the language and not part of a software imple­

mentation. We need not include the structure of these primitives in the StandardRep.

Instead, we define one or more SimpleDefinition’s to represent each of these primitive

program units.

Table 1 displays the complete mappings of predefined procedures. In Table 1, F

represents a file variable and F j represents an implicit file pointer variable. In the

mapping of predefined procedures for pointers, T is an implicit variable representing

the collection of objects that the pointer P may address. In addition to the Table 1, we

can have variables of structured types as parameters of read, readln, write, and writein.

Furthermore, we can have pointer variables which are components of structured types;

for example:

To treat the above examples properly, we employ the same method as we do for struc­

tured data types in section 3.5.

These predefined procedures are recognized when parsing a procedural statement.

However, we must treat them differently than an ordinary procedure call. To do this,

we use two supporting routines - one for procedures with parameters and the other

for procedures without parameters - to recognize predefined procedure identifiers and

generate SimpleDefinition's as defined in Table 1.

Table 1: Mapping of Pascal Predefined Procedures

33

Predefined Procedure
rewrite(F)
put(F)
reset (F)
get(F)
read(F, V)
read(F, V1,...,Vn)
readln(F, V)
readln(F, V],...,Vn)
readln(F)
read(V)
read(V],..., Vn)
readln(V)
readln(Vj,..., V„)
readln
write(F, E)
write(F, Ei,...,En)
writeln(F, E)
writeln(F, Ei,...,En)
writein (F)
write(E)
write(E],..., En)
writein (E)
writeln(E|,..., E„)
writein
page(F)
page
pack(A, B. C)
unpack(A, B, C)
new(P)
new(P , Ci,... ,C„)
dispose(P)
dispose(P C],..., Cn)

Sequence of Simple Definitions
(M)

(FT,0)
(Ft,(F))
(FT,(F))
(V,(FT»,
equivalent to read(F, Vfi); ..read(F, Vn)
equivalent to read(F, V)
equivalent to read(F, \'i,...,Vn)
equivalent to get(F)
(V, (Input])), (Input], (Input))
equivalent to read(V]); read(l7n)
equivalent to read(V)
equivalent to read(V|...., V7n)
equivalent to get (Input)
(F],(E)),(F,(F,F]))
(F,(F,El,...,En)), (F !,(£„))
equivalent to write(F, E); writeln(F)
equivalent to write(F, E|,...,E„); writeln(F)
(F, (F, end-of-line))
(Output f, (E)), (Output, (Output, Output C))
(Output, (Output, Et,..., E,,}), (Output (,(£’„))
equivalent to write(E); writein
equivalent to write(E|,..., E„); writein
(Output, (Output, end-of-line'')
(F. (Fj end-of-page))
(Output, (Output, end-of-page')
(C,(.4,B))
(F,(A,C))
(P, ()), (T. (P,T')
(P.O), (T,(P,T.C\....... Cn))
(T,(P,T)),(P,(nil))
(T, (P, T,Ct,.. .X^)), (P, (nilY)

Pascal Code: Y := abs(X)1.

SimpleDef: (Y,(X))

Pascal Code: Y := abs(X - Y)2.

SimpleDef: (Y,{X,Y))

Pascal Code: while not eoln do1.

{Input)Predicate:

Pascal Code: if not eof then2.

Predicate: {Input)

5

Operator and Operand Counts3.7

34

When parsing expressions, predefined functions

ner as for predefined procedures.
can be recognized in a similar man-

The HcdsteadlnfoType component of each node in a UnitFlowStructure is necessary to

calculate the software science measuresj8|. The determination of which tokens and

groups of tokens constitute operators or operands is made according to the following

In the case of eof and eoln without parameters, we use Input instead of file variable F

as follows:

Pascal predefined functions each have one formal parameter and return a value

without side effects. These functions include abs(X), sqr(X), sqrt(X), sin(X), cos(X),

exp(X), ln(X), arctan(X), odd(X), eof(F), eoln(F), trun(X), round(X), ord(X), chr(X),

succ(X), and pred(X). We consider the use of a predefined function cis a simple variable

or constant reference. Let X and Y be variables of a simple type; the following are

examples of the SimpleDefinition's that represent statements that use the abs function:

1.

2.

The following entities are counted as single operators:3.

/ div mod*
>

and innot gotoor

The following groups of entities are counted4.

case..of..end while..do

if.. t h en

for..to., do

pairs of entities5.

*

35

• unary and binary - are counted

occurs as part of case label.

begin..end

with..do

• . is counted as either a record component separator or a program termina­

tor,

I
else

The following entities or are counted

criteria of Bugh|10] with a little modification for this particular implementation. The

counting strategy is originated by Salt| 11]. The operator and operand counting strategy

used in this implementation are as follows:

repeat., until

for..don nto..do

as single operators:

are considered. The program heading, declaration,

• unary and binary + are counted

occurs as part of case label,

as the same operator except when unary +

Variables, constants, filenames, labels, and the reserved word nil are counted as

operands.

as the same operator except when unary -

Only executable statements

and comments are ignored.

as single operators:

argument list operator or grouping operator,

• [] is counted as either a subscript operator or set operator.

6. Procedure and Function calls are counted as operators.

It is

goto 100

writeln (total:5:2,average:5:2);100:

1

case number of

36

-777, 0 : stmt 1;

pos : st mt 2;

neg : stmt3;

end

as operators and accompanying labels are counted7. All goto statements are counted

as operands.

• 0 is counted cis either an

the label 100: occurs twice and the operator : occurs four times.

8. The colon when it occurs with a label is considered part of the label,

counted as an operator only when it occurs as a field formatting symbol in a

write or writeln statement. For example, in the code below,

9. Each case label, its accompanying colon, and the optional unary + and - are

counted as a single operand. If a case label list is used to select a clause of the

case statement, then each label is counted as a separate operand and the comma

separating them are counted as occurrences of the same operator. For example,

-177:, 0:, pos:, and neg:

The : = is not counted as a separate operator when it occurs within a forstatement.10.

11.

12.

Testing Strategy4

37

Literals are counted as operands. This includes the literal string and the enclosing

quotes.

are operands and , and case..of .end are operators.

In Bugh’s strategy the unary + and - are counted

be counted as part of operands

as operators while in our imple­

mentation they can be counted as part of operands as we presented above. The main

reason for this change is due to the difficulties in counting unary operands in a case

label. At the time of parsing case label, the parser does not know which node the oper­

ator and operand belongs to. Hence, we need to return both the operand and operator

as a result of the returned value of the grammar rule. This complicates the implemen­

tation since we have to maintain another global variable only for this. Furthermore, we

think that this alternative way is also a reasonable counting strategy. Consequently, we

decided to treat the each case label including unary operator and colon as one operand

even though the original Bugh’s strategy is possible to implement.

Counting operators and operands is done during the parsing of the program. As

soon as an operator or operand is parsed, it is added to the list Operators or Operands

of the global variable ndptr.

The executable portion of any procedure or function is counted with any local

variable treated as a unique operand and any global variable treated as an occur­

rence of some previously defined operand.

A perfect testing strategy is impossible. However, by selecting test data very carefully,

we believe we can achieve reasonably reliable test results. To test our StandardRep

the basic structures discussed in1.

• a simple statement,

• an if-then statement with a simple statement in it.

• an if-then-else statement with a simple statement in it,

• a case statement with three cases, each of them has a simple statement,

• a repeat statement with a simple statement in it,

• a for statement with a simple statement in it.

Find all possible sequences of two statements selected above and test them.2.

3.

1

38

1. a goto statement in a statement sequence for both forward and backward branch­

ing.

we select the following

generator, we tried to find all possible combinations of program segments. We employ

the following strategy for testing the representation of control flow:

Select the simplest program segments based on

Section 2 and test them. These program segments are as follows:

Find all possible nesting cases of two statements selected above and test them.

They are as follows: Each of the eight statements selected in strategy 1 nested in

if-then statement, if-then-else statement, case statement, repeat statement, while

statement, and for statement, respectively.

If we consider strategy 1 to be a basis and strategy 2 and 3 to be inductive clauses, we

can show the correctness of the generator in representing control flow without testing

any more combinations.

For testing the generator on programs with goto statements,

program segments.

• a while statement with a simple statement in it,

if-then statement for both forward and backward

For additional testing of the generator, we tested the following program segments.

expressions consisting of1.

• real and integer numbers

• true and false

• literals

• arithmetic, relational, boolean, and set operators

• set notation

• user-defined function call

• predefined function call

2. empty statement»

assignment statement consisting of3.

• simple identifiers

• identifiers with array designators

• pointer variables

39

4. a goto statement that branches from the inside of the loop to the outside of the

loop for both forward and backward branching.

3. a goto statement nested in an if-thcn-else statement for both forward and back­

ward branching. In this case, we consider the cases where the goto statement is

in then clause, else clause, and both.

2. a goto statement nested in an

branching.

• buffer variables

• record variables

4. procedural statement

• user-defined procedures with and without parameters

• predefined procedures displayed in Table 1

5. with statement

• nested with statement

6. sequencing and nesting of procedure and function declaration

7. detecting global variables

8. value parameters

9. comments

Conclusion5
i

actual programming

40

The mapping of ISO Standard Pascal programs to the Standard Representation is

implemented and tested by selected Pascal program segments. The implementation

was designed using the YACC and LEX compiler generator tools. An inductive approach

was used to select test data, and Pascal test programs were tested successfully. This

project demonstrates that a StaiidardRep of programs written in an

All the test program segments selected

all of them were working correctly. Hence, we

generator is correct with respect to all possible Pascal programs.

were tested completely. We found that

have confidence that the StandardRep

full ISO Standard Pascal

a

References

|i]

[2|

Lex

Hl

41

J. M. Bieman, A. L. Baker, P. N. elites, D. A. Gustafson, and A. C. Melton. A

standard representation of imperative language programs. 1986.

S. C. Johnson. 1’,46’G' - Yet Another Compiler Compiler. Technical Report, AT

& T Bell Laboratories, Murray Hill, New Jersey, 1975.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-

Hall, Englewood Cliffs, New Jersey, 1978.

M. E. Lesk. Lex a lexical analyzer generator. Technical Report Computing

Science Technical Report 39, AT A’ T Bell Laboratories, Murray Hill, New Jersey,

1975.

|3)

language can be constructed. The implementation works on

including pointers, structures, files, and goto statements.

As a basis for this implementation, we used the mapping strategy from Pascal

programs to the StandardRep of Bieman, et. al.|lj. However, if one wants to define

different mapping strategy and use it in implementing a generator, one can still

use similar algorithms to those developed here. Furthermore, the generator has been

designed so that it can be easily modified for other local versions of Pascal. In order to

deal with the non-standard features of Pascal, we can add and modify suitable semantic

routines of the YACC specification of the generator. Hence, we believe that the actual

code in the Appendix A and algorithms in Section 3 will help in developing different

versions of the generator.

As a future project, we can develop generators for the other imperative languages

including FORTRAN, COBOL, C, and Ada.

|6] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, New York, 1977.

[8] M. H. Halstead. Elements of Software Science. Elsevier, New York, 1977.

«

42

[5] K. Jensen and N. Wirth. Pascal User Manual and Report. Springer-Verlag, New

York, 3rd edition, 1985.

[10] R. A. Bugh. An Empirical Investigation of Control Flow Complexity Measures.

Master’s thesis, Iowa State University, 1984.

[11] N. F. Salt. Defining software science counting strategies. ACM SIGPLAN Notices,
17:58-67, March 1982.

on Software Engineering,

[7] A. L. Baker, J. M. Bieman, and P. N. Clites. Implications for Formal Specifications

- Results of .Specifying a Software Engineering Tool. Technical Report T.R. 86-9,

Iowa State University, Dept, of Computer Science, Iowa State University, Ames,

Iowa, 1986.

|9] T. J. McCabe. A complexity measure. IEEE Trans.

2(4), 1976.

Source Program for StandardRepA

43

0
1
2
0
1
1
2
3
4
5
6
1
0
1
0
1
0

HULL
DELETED
START
TERMINAL
CASEDID
IDTAG
FUHCTAG
PTRTAG
SDEFTAG
PDEFTAG
BASICTYPE
EHUMERATEDTYPE
SUBRAHGETYPE
RECORDTYPE
POIHTERTYPE
FILETYPE Oil
OFF
VALID
INVALID
YES
HO

or OFF */

/m** c
#define
#define
#define
#define
#def ine
#define
#define
#def ine
#define
#def ine
#def ine
#define
#def ine
#define
#define
#def ine
#define
#define
#define
#define
#define
#define

sr h **♦»***#»*♦♦♦♦»*♦♦*♦♦»»**♦♦*♦***♦*«♦♦♦♦♦*♦*******♦♦♦*♦**♦♦#♦♦*/
0

-1

typedef struct UnitRepType {
struct HeaderType ^interface;
struct UnitFlov.Struct *ufs;
struct UnitRepType *next;

} UnitRepType;
typedef struct HeaderType {

char *pname;
struct FPListType *fparams;
struct IdListType ^globals;

} HeaderType;
typedef struct FPListType {

struct IdListType *fp;
struct IdListType *in;

} FPListType;
typedef struct IdListType {

char +id;
struct IdListType *next;

} IdListType;
typedef struct ExtraldType {

struct ExpType *u;
struct IdListType *c;

} ExtraldType;
typedef struct WithVarType {

char *id;
struct ExtraldType *ext;
short borderline; /* OH
struct WithVarType *next;

}■ WithVarType;
typedef struct UnitFlowStruct {

44

struct HodeType *nd;
struct Edge *eg;
struct IdListType *s;

> UnitFlowStruct;
typedef struct IJodeType {

int nid;
struct LocalDef *ldef;
struct ExpType *pexp;
struct OpCount *operators;
struct OpCount *operands;
short gt; /* Oil or OFF */
struct HodeType *next;

)• HodeType;
typedef struct LocalDef {

union
struct SimpleDef *sdef;
struct ProcDef *pdef;

} def;
short tag;
struct LocalDef *next;

} LocalDef;
typedef struct SimpleDef •(

char *varid;
struct ExpType *sexp;

y SimpleDef;
typedef struct ProcDef {

char *procid;
struct ExpSequence *pexp;

} ProcDef;
typedef struct ExpType {

union { char +id;
struct FuncExp *fexp;

} exp;
short tag;
struct ExpType -»next;

} ExpType;
typedef struct FuncExp {

char -*funcid;
struct ExpSequence ‘exps;

} FuncExp;
typedef struct ExpSequence {

struct ExpType ’♦exp;
struct ExpSequence *next;

} ExpSequence;
typedef struct OpCount {

char *name;
int occur;
struct OpCount *next;

} OpCount;
typedef struct Edge {

int from;

*next;

45

sr .y $*#****************♦*♦****'* i * + ** + ♦ + ♦ + #* *•.*>******’!: i. +
•/.{#include "sr.h”
Runion {

char *str;

int to;
struct Edge *next;

} Edge;
typedef struct MemoryTable {

struct LabelTable *lab;
struct IdListType *const;
struct TypeTable *type;
struct DecListType *var;
struct MemoryTable *next;

}• IlemoryTable;

typedef struct LabelTable {
int to;
int nid;
struct OriginList *from;
struct OriginList *dead;
struct LabelTable *next;

} LabelTable;
typedef struct TypeTable {

char *id;struct TypeDenoterType *d;
struct TypeTable *next;

} TypeTable;
typedef struct TypeDenoterType {

short tag; */* BASICTYPE, Et’UMERATEDTYPE, SUBRA: GETYPE, ♦/
union < /* RECORDTYPE, POIUTERTYPE, and FILETYPE */

char *id;
struct IdListType *i;
struct DecListType *f;

} d;struct TypeDenoterType *next;
} TypeDenoterType;
typedef struct DecListType {

struct IdListType *idl;
struct TypeDenoterType ‘d;
struct DecListType 4next;

} DecListType;
typedef struct OriginList {

int n;
struct OriginList

} OriginList;
typedef struct BrRootStack {

struct l.’odeType nd;
short flag;
struct BrRootStack *next;

y BrRootStack;

rars

program

{

{ $$ = HULL; }

{ $$ = mkfplist($2); }

46

addunitrep($2.$3);
operatorent ($6 }

: PROGRAM
IDprogparams
SC
{ pushmemtabO ; }
block
PD

progparams: /* empty */
I LP idlist
RP

IdListType *idlptr;
FPListType *fptr;
ExpType *expptr;
ExtraldType *extptr;
WithVarType *wptr;
ExpSequence *expseqptr;
HodeType *nptr;
UnitFlowStruct *ufs;UnitRepType *prep;
TypeDenoterType *tdptr;
LabelTable *labptr;
TypeTable *typtr;
DecListType *dptr;

\token <str> HUMBER ID LITERAL
<str> PROGRAM LABEL COIIST TYPE PROCEDURE FUIICTIOIi VAR
<str> BEGIJI EHD ARRAY FILE RECORD SET PACKED
<str> CASE OF FOR TO D0W1IT0 DO IF THE11 ELSE
<str> REPEAT U1ITIL WHILE WITH GOTO ASGli 1IIL FORWARDAioxen <str> LB RB PD CM CL SC AR LP RP SR SL

/.type <str> semicolon todov/nto constant carrays arrinds caseconst
'/.type <idlptr> constdef consts idlist
'/.type <idlptr> caseconsts constlist
'/.type <extptr> extvars extvar
'/.type <v;ptr> withvars withvar
'/.type <fptr> progparams fparams fpmlist fparam dfparams
'/.type <expptr> aparam exprlist expr p
'/.type <expptr> setelems elemiist elem
'/.type <expseqptr> apmlist plist
'/.type <nptr> stmtseq stmts stmt caselist caseelem rtnnevnode
7,type <prep> procfuncdec procfunc block
Y.type <tdptr> typedenoter typelist
'/.type <labptr> labeldec labels
'/.type <typtr> typedef types
'/.type <dptr> fieldlist fixedpart variantpart variants vardec
'/.left <str> IIJ EQ HE LT GT LE GE

<str> OR PLUS MIHUS
DIV mod a::d MULTIPLY DIVIDE ni’ARVI.1T! ll<? IIIIARVPI HR HOT

/.lonen
Atoken
Atoken
Atoken
Atoken
Atoken
7 + i r n o i

hilus
<str> L_. -- ------- --
<str> UI1ARYMIKUS UL'ARYPLUS HOT

block

labels

{ $$ = mkidlist($1); }consts

typedef

types

vardec

vars

procfuncdec:

47

: /' empty */
I VAR vars

: /* empty */
I TYPE types

{ $$ = setlabtab($l); }
{ $$ = addlabtab($l,setlabtab($3)) ; }

: idlist CL typedenoter SC
{ $$ = mkdeclist($1,$3) ; }

I vars idlist CL typedenoter SC
{ $$ = catdeclist($1.mkdeclist($2,$4)) ; >

{ operatorent($8,"begin..end");
addfirstedge($8->nid);
addlastedge($8);
rmlastnode($8);
unitstack->ufs->nd = $8;
popmemtab();
$$ = $8; }

constdef : /* empty */
I CONST consts

/* empty */ { $$ = HULL; }
I procfuncdec procfunc SC

{ $$ = $2; }

: ■{ initunitrepO; }
labeldec
constdef
typedef
vardec
procfuncdec
BEGIN stmtseq END

: NUMBER
I labels CM HUMBER

{ $$ = NULL; }
{ memtab->lab = $2;

$$ = $2; }

{ $$ = HULL; }
{ memtab->const = $2;

$$ = $2; }

{ $$ = HULL; }
{ memtab >type = $2;

$$ = $2; }

{ $$ - HULL; }
{ addvars($2);

$$ - memtab; }

labeldec : /* empty */
I LABEL labels SC

: ID EQ constant SC ...
I consts ID EQ constant SC

{ $$ = catidlist($l.mkidlist($2)); }

: ID EQ typedenoter SC
{ $$ = settype($l.$3); >

I types ID EQ typedenoter SC
{ $$ = addtype($l.set type($2.$4)); }

{ popmemtab(); $$ = NULL; }

block

{ popmemtab(); $$ = HULL; }

{ pushmemtabO; $$ = HULL; }fparams

{ $$

fpmlist
{ $$ => catfplist($l ,$3) ; }

fparam

48

{ pushmemtabO ; }

{ operatorent ($5 ;
$$ = addunitrep($2.mkfplist(mkidlist($2))); }

{ addvars(mkdeclist($1,mkbasictype($3)));
$$ = mkinfplist ($1); }

I VAR idlist CL carrays
{ addvars(mkdeclist($2.mkbasictype($4)));

: fparam
I fpmlist SC fparam

: /* empty ♦/
I {pushmemtabO;}

LP fpmlist RP

I PROCEDURE
ID
fparams
SC FORWARD

I FUNCTIONID
SC

: VAR idlist CL ID
{ addvars(mkdeclist($2,mkbasictype($4)));

$$ = mkfplist($2); }
I idlist CL ID

I FUNCTION
ID
fparams
CL
ID
SC
block
{ operatorent($7,";");

if ($3 != HULL) unitstack->ufs->s = $3->in;
$$ = addunitrep($2,catfplist($3,mkfplist(mkidlist($2))));}

I FUNCTION
ID
fparams
CL
ID
SCFORWARD

{ operatorent($5;
if ($3 != HULL) unitstack->ufs->s = $3->in;
$$ = addunitrep($2,$3); }

procfunc : PROCEDURE
ID
fparams
SC
block

- $3; }

carrays

{ $$ = $11; }

arrinds : ID SR ID CL ID
I arrinds SC ID

« I SET OF typedenoter
$3; }

I FILE OF typedenoter

I AR ID

{ $$ = HULL; }typelist : typedenoter

49

{ $$ = HULL; }
{ $$ = HULL; }

{ $$ = CULL; }
{ $S = CULL; }
{ $$ = CULL; }
{ $$ = HULL; }
{ $S = CULL; }
{ SS = HULL; 1
{ $$ = HULL; }

{ $$ = mkfiletype($3) ; }
I PACKED FILE OF typedenoter

{ $$ = mkfiletype($4); }
{ $$ = mkpointertype($2); }

{ $$ = HULL; }
SR ID CL ID

{ $$ = HULL; }

{ $$ = mkbasictype($l) ; }
{ $$ = mkenumeratedtype($2) ; }

I constant SR constant { $$ = mksubrangetypeO ; }
I ARRAY LB typelist RB OF typedenoter

{ $$' = $6; }
I PACKED ARRAY LB typelist RB OF typedenoter

{ $$ = $7 }
I RECORD fieldlist EHD { $$ - mkrecordtype($2); }
I PACKED RECORD fieldlist EHD

{ $$ - mkrecordtype($3); }

constant : HUMBER
I ID
I PLUS HUMBER
I MIIIUS HUMBER
I PLUS ID
I Minus ID
I LITERAL

dfparams : /» empty */
I LP fpmlist RP
: ARRAY LB arrinds RB OF ID

{ $$ = $6;}
I ARRAY LB arrinds RB OF carrays

{ $$ = $6; }
I PACKED ARRAY LB ID SR ID CL ID RB OF ID

{ $$
I PACKED SET OF typedenoter

{ $$ = $4; }

$$ = mkfplist($2) ; }
I idlist CL carrays

{ addvars(mkdeclist($l,mkbasictype($3)));
$$ = mkinfplist($l); }

I PROCEDURE ID dfparams
{ $$ = mkfplist(mkidlist($2)); }

I FUHCTIOH ID dfparams CL ID
{ $$ = mkfplist(mkidlist($2)); }

typedenoter: ID
I LP idlist RP

{ $$ = HULL; }

{ $$ = $1; }

{ $$ = $1; }

variantpart:

{ $$ = catdeclist($1,$6); }

constlist: constant

{ $$ = HULL; }

stmtseq

stmts

rtnn<
DUMB!

50

{ operatorent(lastndptr($1)
$$ = linkflowl($1.$3); }

I typelist CM typedenoter
{ $$ = HULL; }

I fixedpart SC variantpart SC
■($$ = catdeclist ($1, $3) ; }

I variantpart
I variantpart SC

: stmts
I stmtseq
SC
stmts

: /» empty ♦ /
rtnnewnodeI stmt { rmfieldtypeO ; }

I rtnnewnode
HUMBER CL

{ operandent($1,mklabelopnd($2));
destlist($2,$1) ;
$$ = $1; }

"Tewnode
HUMBER CL stmt

■{ operandent ($1 .mklabelopnd ($2)) ;
destlist($2,$1);
rmfieldtypeO ;

CASE ID OF variants
{ $$ = catdeclist(mkdeclist(mkidlist($2),HULL),$4); I

] CASE ID CL ID OF variants
{ $$ = catdeclist(mkdeclist(mkidlist($2),$4),$6); }

fieldlist: /* empty */
I fixedpart
I fixedpart SC
I fixedpart SC variantpart

{ $$ = catdeclist($1,$3); }

variants : constlist CL LP fieldlist RP
{ $$ = $4; >

I variants SC constlist CL LP fieldlist RP7

{ $$ = HULL; }
I constlist CM constant

fixedpart: idlist CL typedenoter
{ $$ = mkdeclist($1,$3)

I fixedpart SC idlist CL typedenoter
{ $$ = catdeclist($1,mkdeclist($3,$5))

$$ = linklabel($1,$4); }

stmt

ID

VAUD)) {

}

}

51

I BEGIN
stmtseq
END

: rtnnewnode
ID ASGII expr

{ operandent($1,$2);
operatorent ($1, ;
chkglb($2);
if (brroot != DULL) brroot->flag = INVALID;
if (withvarstack == NULL)$$ = growdefs($1.mksimpledef($2,$4));
else $$ = withgrowdefs($l,$2,NULL,$4); 1

| rtnnewnode
ID extvars ASGII expr

•{ operandent ($1 , $2) ;
operatorent($1,” ;
chkglb($2);
if (brroot != NULL) brroot->flag = INVALID;
if (withvarstack == NULL)

$$ = growdefs($1.mksimpledef(determobj($2,$3->c),
extraexplist 1($2,$3.$5)));

else $$ = withgrowdefs($1,$2,$3,$5); }
I rtnnewnode

{ operatorent($1.$2);
if (brroot != NULL) brroot->flag = INVALID;

$$ = growproedefsi($1,$2); }

{ operatorent($2."begin..end");
$$ = $2; }

I rtnnewnode
IF
expr
THEN
stmts

I rtnnewnode
ID
LP apmlist RP

{ operatorent($1,$2);
operatorent($!,"()");
if (brroot •= NULL) brroot->flag = INVALID;
$$ = growproedefs2($l.$2,$4); }

| GOTO NUMBER
{ if ((brroot != NULL) && (brroot->flag

operatorent(brroot->nd,"goto");
operandent(brroot->nd,$2);
gotobranch($2,brroot->nd->nid);
brroot->flag -= INVALID;

else {
operatorent(ndptr,"goto");
operandent(ndptr.$2);
gotobranch($2.ndptr >nid);

$$ = NULL; }

}
4 •

ehd

52

I REPEAT
stmtseq
UHTIL
expr
rtnnewnode

{ operatorent($2,"repeat. .until") ;
setrepeatpexp($2,$4);
addedge(last($2),$5->nid);
addedge(last($2),$2->nid);

rtnnewnode
{ operatorent($1,"if..then");

$l->pexp = $3;
if ($5 != HULL) {

addedge($l->nid,$5->nid);
if (isgotof lagOli ($5) == HO)

addedge(last($5),$6->nid);

addedge($l->nid,$6->nid);
$$ = append($1 ,linkf lov/2 ($5, $6)) ; }

I rtnnewnode IF
expr
THE1I
stmts
{ pushbrroot($1); }
ELSE
stmts
rtnnewnode

{ popbrrootO;
operatorent ($1,"if..then");
operatorent($8,"else");
$l->pexp = $3;
if ($5 != HULL) {

addedge($l->nid,$5->nid);
if (isgotof lagOli ($5) == HO)

addedge(last($5),$9>nid);
if ($81= HULL) {

addedge($l->nid.$8->nid);
if (isgotof lagOli ($8) == HO)

addedge(last($8).$9->nid);
}
$$ = linkifthenelse($l,$S,$8,$9); }

I rtnnewnode
{ pushbrroot($1); }
CASE
expr
OF
caselist
semicolon
rtnnewnode
EHD

{ popbrroot();
operatorent($1 , "case..of..end");
$l->pexp = $4;
addcasedge($l->nid,$8->nid);
if ($6 == HULL) $$ = $1;
else $$ = append($l. linkf lov/2 ($6. $8)) ;)•

downto . . do” ; }

apmlist : aparam

aparam

53

{ $$ = ’’for. .to. .do"; }
■{ $$ = "for.

todownto : TO
I DOWIITO

< $$ - HULL;)
{ operatorent (ndptr}

semicolon: /* empty ♦/
I SC

$$ = linkflow3($2,$5); }
| rtnnewnode
WHILEexpr
DO
stmts
rtnnewnode

{ operatorent($1,"while..do") ;
$l->pexp = $3;
addedge($1->nid,$5->nid);
addedge(last($5),$l->nid);
addedge($l->nid,$6->nid) ;
$$ = append($1,linkflow3($5,$6)); }

I rtnnewnode
FOR
ID
ASG11
expr
rtnnewnode
todownto
expr
DO
stmts
rtnnewnode

{ operandent($1,$3);
operatorent($1,$7);
$l->ldef = mksimpledef($3,$5);
$6->pexp = catexplist(mkexptypel($3),$8);
attachdef($10,mksimpledef($3.mkexptypel($3)));
addedge($l->nid,$6->nid);
addedge($6->nid,$10->nid);
addedge(last($10),$6->nid);
addedge($6->nid,$ll->nid);
$$ = append($1,append($6,linkflow3($10,$11))); }

I WITH withvars DO stmts
•{ opera tor ent ($4 , "with, .do") ;
popwithvarO ;
$$ = $4; }

{ $$ = mkexpseq($l); }
I apmlist Cl! aparam

{ operatorent (ndptr ,",’’) ;
$$ = catexpseqlist($1,mkexpseq($3)); }

: expr
I expr CL expr

{ operatorent (ndptr ,’’:”) ;
$$ = catexplist($1,$3); }

I expr CL expr CL expr

ID
HULL)

ID extvars

caseelem

caseelem :

stmts

{ $$ = mkidlist ($1) ; }

{ $$ = catidlist($l.mkidlist($3)); }

mkcaseconstopnd(HULL,$1); }

extvars

extvar

I PD ID

54

I PLUS ID
I Minus ID
I LITERAL

caselist SC caseelem
{ operatorent (ndptr;

$$ = linkflow3($l,$3); }

mkcaseconstopnd(HULL.$l); }
mkcaseconstopnd(IIULL.Sl) ; }

caseconst: HUMBER
I ID
I PLUS HUMBER

caselist :I

caseconsts: caseconst
I caseconsts CM
caseconst

: extvar
I extvars extvar

{ $$ = mkextralist($1,$2); }

{ operatorent(ndptr,”:”);
operatorent(ndptr,”:”);
$$ = catexplist(catexplist($1,$3),$5); }

{ operandent(ndptr,$1);
chkglb($l);
if (withvarstack == HULL)

$$ = mkexptypel($1);
else $$ = mkwithexptype($1, HULL) ; }•

{ operandent(ndptr,$1);
chkglb($l);
mkfieldtype($l,$2);
if (withvarstack == HULL)

$$ = extraexplist2($l,$2);
else $$ = mkwithexptype($1,$2); }

: LB exprlist RB
{ operatorent(ndptr.”[]");

$$ = mkextraidl($2); }
{ operatorent(ndptr»"\.");

caseconsts
CL
{ brroot->flag = VALID; }
stmts

{ caseopcnt($4,$1);
if ($4 • = HULL) {

addedge(CASEUID.$4->nid);
if (isgotoflag0:i($4) == HO)

addedge(last($4).CASEHID);
$$ = $4; }

{ $$ =
{ $$ =
{ $$ = mkcaseconstopnd("+”,$2); }

I MI!IUS HUMBER { $$ » mkcaseconstopnd("-",$2); }
{ $$ = mkcaseconstopnd('’+'‘ ,$2) ; }
{ $$ = mkcaseconstopnd("-",$2); }
{ $$ = -

I AR

: IDexpr

I ID extvars

I DUMBER

I LITERAL

I MIL

I LB setelems RB

I LP expr RP

*

I expr DIV expr

55

operandent(ndptr, $2) ;
$$ = mkextraid2($2); }

{ operatorent(ndptr,;$$ = mkextraid2("\“"); j

{ if ((strcmp($l,"eof") == 0) II
(strcmp($l,"eoln") == 0)) {
operatorent(ndptr,$1);
$$ = mkexptypel("input"); }

else {
operandent(ndptr,$1);
chkglb($l);
if (withvarstack == HULL) $$ = mkexptypel($1);
else $$ = mkwithexptype($1,HULL);

{ operandent(ndptr,$ 1);
chkglb($l);
if (withvarstack == HULL)

$$ = extraexplist2($l,$2);
else $$ = mkwithexptype($1,$2); }

{ operandent(ndptr,$1);
$$ = mkexptypel($1); }

{ operandent(ndptr,$1);
$$ = mkexptypel($1); }

{ operandent(ndptr,"nil");
$$ = mkexptypel("nil"); }

exprlist : expr
I exprlist CM expr

{ operatorent(ndptr,",");
$$ = catexplist($1,$3); }

I expr PLUS expr
{ operatorent(ndptr,"+");

$$ = catexplist($1,$3); }
I expr MIHUS expr

{ operatorent(ndptr,"-");
$$ = catexplist($1,$3); }

| expr MULTIPLY expr
{ operatorent(ndptr,"»");

$$ = catexplist($1,$3); }
I expr DIVIDE expr

{ operatorent(ndptr,"/");
$$ = catexplist($1.$3); }

| ID LP plist RP
{ operatorent(ndptr,$1);
operatorent(ndptr,"()");
$$ = mkfunctionexp($l,$3); }

3
{ operatorent(ndptr,"[]");

$$ = $2; }
{ operatorent(ndptr,"()");

$$ = $2;)

I expr MOD expr

I expr EQ expr

I expr HE expr

I expr LT expr

I expr GT expr

I expr LE expr

I expr GE expr

I expr OR expr

I expr III expr

I PLUS expr

I MINUS expr

I HOT expr

plist

P

I ID

56

■{ operatorent (ndptr, "<>’’) ;
$$ = catexplist($1,$3); }

{ operatorent(ndptr;
$$ = catexplist($1,$3); }

{ operatorent(ndptr,”>");
$$ = catexplist ($1,$3); }

{ operatorent(ndptr,"div");
$$ = catexplist($1,$3); }

{ operatorent(ndptr,"=");
$$ = catexplist($1,$3); }

: expr
I ID extvars

■{ $$ = mkexpseq($l) ; }
{ operatorent(ndptr,",");

$$ = catexpseqlist($1.mkexpseq($3)); }

{ operatorent(ndptr;
$$ = catexplist($1,$3); >

{ operatorent(ndptr,"or");
$$ = catexplist($1,$3); }

{ operatorent(ndptr,"in");
$$ = catexplist($1,$3); }

7,prec UHARYPLUS
{ operatorent(ndptr,"+");

$$ = $2■ }
7,prec UHARYMIHUS
{ operatorent(ndptr,"-");

$$ - $2; }
{ operatorent(ndptr,"not");

$$ = $2;)

{ operatorent(ndptr,">=");
$$ = catexplist($1,$3); }

{ operatorent(ndptr,"mod");
$$ = catexplist($1,$3); }

: PI plist CM p

{ operandent(ndptr,$1);
chkglb($l);
if (withvarstack == HULL)$$ = extraexplist2($l,$2);
else $$ = mkwithexptype($l,$2); }

{ operandent(ndptr,$1);

I expr AND expr
{ operatorent(ndptr,"and");

$$ = catexplist($1,$3); }

HULL)

elemlist : elem

elem

idlist : ID

I idlist CM ID

withvars : withvar
I withvars CM withvar

: IDwithvar

I ID extvars

{ $$ - newnodeO ; }

57

chkglb($l);
if (withvarstack ==
$$ = mkexptypel ($1) ;
else $$ = mkwithexptype($l.HULL); }

: expr
I expr SR expr

setelems : /*
I elemlist

{ operatorent(ndptr,”..");
$$ = catexplist($1,$3); }

{ operandent(ndptr,$1);
$$ = mkidlist($1); }

{ operatorent (ndptr ,*',") ;
operandent(ndptr,$3);
$$ = catidlist($l.mkidlist($3)) ; }

{ pushwithvar($1,0H);
$$ = HULL; }

{ opera toicnt (",'*) ;
pushwithvar($3,OFF);
$$ = HULL; }

{ operandent(ndptr.$1);
chkglb($l);
$$ = mkwithvars($1,HULL); }

{ operandent(ndptr.$1);
chkglb($l);
$$ = mkwithvars($1,$2); }

HodeType *ndptr = HULL;
MemoryTable *memtab = HULL;
LocalDef *newdef = HULL;
IdListType *glbls = HULL;

7.7.
#include <stdio.h>
tfinclude <ctype.h>
tfinclude <strings.h>

UnitRepType *unitrep = HULL, *unitstack = HULL;
—J — — — 1’ITTT .

/* auxiliary grammar */

rtnnewnode:

j elemlist CM elem
{ operatorent(ndptr,",");

$$ = catexplist($1,$3); }

empty */ { $$ = HULL; }

{

int i;

58

<
>

char *m, *malloc();

m = (char *) malloc (i+ (4-i’/,4)) ;
return m;

}
yyerror(s)

char *s;

}
char *emalloc(i)

int i;<

. \t\nl,delim} +A-Za-z]0-9]
{letter}({letter}I{digit})*
{digit}+(\.{digit}*)?(e[+-]?{digit}+)?

/***** lex.1 *♦♦*♦♦**♦**♦♦*♦*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦#♦♦******a**************«*««*/
7.{^include "sr.h"
#include ’'y.tab.h"
%}delim
ws
letter
digit
id
number
moreliteral
literal

program
label
const
type
procedure
function
var
begin
end
array
file
record
set
packed
case
of
for
to

V/ithVarType *withvarstack = HULL;
BrRootStack *brroot = HULL;
char *fieldtype = HULL;
int n = 0; /* node id counter */
main()

yyparseO ;
codegenerate();

{.}
{return PROGRAM;}
{return LABEL;}
{return CO.’IST;}
{return TYPE;}
{return PROCEDURE,}
{return FUNCTION;>
{return VAR;}
{return BEG1II;}
{return EHD,}
{return ARRAY;}
{return FILE;}
{return RECORD;}
{return SET;}
{return PACKED;}
{return CASE;}
{return OF;}
{return FOR;}
{return TO;}

{number}

59

n
H
ii
ii

{moreliteral}
{literal}

downto
do
if
then
else
repeat
until
while
with
goto
f orward
nil n + n
n_ii

div
mod

ii <n
ii >u

»•>=••
and
or
not
in
I! pl
ii j ii
ii ii

ii

. ii

. ii

- ii

("
iQ ii

ii ii

ii »it

{id}

{return DOWHTO;}
{return DO;}
{return IF;}
{return THEN;}
{return ELSE;}
{return REPEAT;}
{return UNTIL;}
{return WHILE;}
{return WITH;}
{return GOTO;}
{return FORWARD;}
{return NIL;}
{return PLUS; }
{return MINUS; }
{return MULTIPLY; }
{return DIVIDE; }
{return DIV;}
{return MOD;}
{return EQ;}
{return LT;}
{return GT;}
{return HE;}
{return LE;}
{return GE;}
{return AND;}
{return OR;}
{return NOT;}
{return III;}
{return LB;}
{return RB;}
{return PD;}
{return CM;}
{return CL;}
{return SC;}
{return AR;}
{return LP;}
{return RP;}
{return ASG!!;}
{return SR;}
{return SL.}
{char ‘emalloc();
yylval.str = (char *) emalloc(strlen(yytext)+1);
strcpy(yylval.str,yytext);
return ID;

{char *emalloc();
yylval.str = (char *) emalloc(strlen(yytext)+1);
strcpy(yylval.str.yytext);
return HUMBER;
{yymoreO ;}
{char *emalloc();
yylval.str = (char *) emalloc(strlen(yytext)+l);
strcpy(yylval.str.yytext);
return LITERAL;

}

p;

}

{

60

1
2
3
4
5
6
7
8
9
10
11
12
13

-1

UnitRepType *tl, *t;
IdListType *n, *mkidset();
unitstack->interface->pname = (char *) emalloc(strlen(id)♦!);
strcpy(unitstack->interface->pname,id);

UnitRepType *p;
HeaderType *h;
UnitFlov.’Struct *f;
char *emalloc();
p = (UnitRepType ♦) emalloc(sizeof(UnitRepType));
h = (HeaderType *) emalloc(sizeof(HeaderType));
h->pname = HULL;
h->fparams = HULL;
h->globals = HULL;
p->interface = h;
f = (UnitFlowStruct *) emalloc (sizeof (UnitFlo‘..Struct)) ;
f->nd = LULL;
f->eg - HULL;
f->s = HULL;
p->ufs = f;
p->next = HULL;
if (unitstack == HULL) unitstack =
else {

p->next “ unitstack;
unitstack ■= p;

Sinclude "y.tab.h"
"' ‘' REWRITE

RESET
PUT
GET
READ
READL1I
WRITE
WRITELH
PAGE
HE’.?
DISPOSE
PACK
U11PACK
USERDEFI1IED

}
UnitRepType saddunitrep(id,p)

char sid;
FPListType »p;

ttinclude "sr.h"
^44 —— II.. 4-_l_

#define
#define
#define
#def ine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
extern UnitRepType *unitrep, *unitstack;
extern llodeType *ndptr;
extern IdListType *glbls;
extern V/ithVarType *withvarstack;
extern BrRootStack *brroot;
extern char *fieldtype;
extern int n;
extern short brrootflag, labelbefore;
initunitrepO
{

IdListType *p;

IdListType *p;

FPListType '•pl, p2;

pl->in = p2->in;

61

ndptr = HULL;
glbls = HULL;
return unitrep;

FPListType *f;
IdListType *t, *1 = HULL, *catidlist(), *mkidlist();
char *emalloc();
f = (FPListType *) emalloc(sizeof(FPListType));
for (t = p; t ! = HULL; t = t->next)

1 = catidlist(1.mkidlist(t->id));f->fp = p;
f->in = 1;return f;

*) emalloc(sizeof(FPListType));

IdListType *t;
if (pl == HULL) return pl;
else if (p2 == I
else if (pl->fp
else {for (t = pl->fp; t->next != HULL; t = t->next);

t->next = p2->fp;

FPListType *mkfplist(p)
IdListType *p;

{

}
FPListType *mkinfplist(p)

IdListType *p;

}
FPListType *catfplist(pl,p2)

FPListType '•pl, *p2;

if (pl->in == HULL)
else {for (t = pl->in; t->next != HULL; t = t->next);

t->next = p2->in;

unitstack~>interface->fparams = p;
unitstack->interface->globals = mkidset(glbls);
tl = unitstack;unitstack = unitstack->next;tl->next = NULL;
if (unitrep == HULL) unitrep = tl;
else {for (t = unitrep; t->next != HULL; t = t->next);

t->next = tl;

FPListType *f;
char *emalloc();
f = (FPListType
f->fp = p;
f->in = HULL;return f;

HULL) return p2;
> ==• HULL) pl->fp = p2 >fp;

return pl;

{

{

{

G2

LocalDef *d;
ProcDef *p;
char *emalloc();
d = (LocalDef *) emalloc(sizeof(LocalDef));

IdListType *v;
if (vp == DULL) return 110;
for (v = vp; v ’= DULL; v = v->next)

if (strcmp(v->id,s) == 0) return YES;
return KO;

}
isvalueparam(s,vp)

char *s;
IdListType *vp;

HodeType *np;
char *emalloc();
np = (llodeType *) emalloc (sizeof (HodeType)) ;
np->nid = ++n;
np->ldef = KULL;
np->pexp = KULL;
np->operators = KULL;
np->operands = KULL;
np->gt = OFF;
np->next = HULL;
ndptr = np; .
return np;

}
LocalDef *mkprocdef(id,u)

char *id;
ExpSequence *u;

}
HodeType *nev.,node()

LocalDef *mksimpledef(id,u)
char *id;ExpType *u;
LocalDef *d;
SimpleDef *s;
char *emalloc ();
d = (LocalDef *) emalloc(sizeof(LocalDef));
s = (SimpleDef *) emalloc(sizeof(SimpleDef));
s->varid = (char *) emalloc(strlen(id)♦1);
strcpy(s->varid,id);
s->sexp = u;
d->def.sdef = s;
d->tag = SDEFTAG;
d->next = DULL;
return d;

{

{

case

}

63

LocalDef *t;

if (n->ldef == HULL) n->ldef = d;
else {

for (t = n->ldef; t->next != HULL; t = t->next) ;
t->next = d;

return n;

BodeType *growdefs(n,d)
BodeType *n;
LocalDef *d;

p = (ProcDef *) emalloc(sizeof(ProcDef));
p->procid = (char *) emalloc(strlen(id)+1);
strcpy(p->procid,id);p->pexp = u;
d->def.pdef = p;
d->tag = PDEFTAG;
d->next = 0;
return d;

break;
case PAGE:

exp = catexplist(mkexptypel("output").
mkexptypel("end of■page"));

return growdefs (n .mksimpledef ("output" , exp)) ;
break;

default:
return growdefs(n.mkprocdef(s,BULL));
break;

p = VRITEL1I;
0) p = READLB;

p = PAGE;

>
BodeType *growprocdefs2(n,s,u)

BodeType *n;
char *s;

int p;
ExpType *exp, *catexplist(), ^mkexptypel();
LocalDef *mksimpledef();
if (strcmp(s,"writein") == 0)
else if (strcmp(s,"readin") ==
else if (strcmp(s,"page") == 0)
else p = USERDEFIBED;
switch (p) {
case WRITELB:

exp = catexplist(mkexptypel("output"),
mkexptypel("end-of-line"));

return growdefs(n.mksimpledef("output",exp));
break;
READLB:
return growdefs(n.mksimpledef("input’",

mkexptypel("input")));

}
BodeType *growprocdefsi(n,s)

BodeType *n;
char *s;

ExpSequence *u;
{

case
{ /4 standard input ♦/

6-1

♦mkprocdef();

(strcmp(s,"reset") == 0)
(strcmp(s,"put") == 0)
(strcmp(s,"get") == 0)
(strcmp(s,"read") == 0)
(strcmp(s,"readin") == 0)
(strcmp(s,"write") == 0)
(strcmp(s,"writein") == 0)
(strcmp(s,"page") == 0)

‘ == 0)

(strcmp(s,"pack") == 0)
0)

}else u = u->next;
if (u == HULL) /' read In(F) */

return growdefs(n.mksimpledef(idw.mkexptypel(id)));
/* read(F.V), readln(F.V), read(V) , readln(V),

read(F,VI,V2,..,Vn). readln(F.VI.V2,..,Vn),
read(Vl,V2,...Vn), or readln(Vl,V2,..,Vn) +/

for (ul = u; ul != HULL; ul = ul->next) {
if (withvarstack == HULL)

n = growdefs(n,mksimpledef(object(ul->exp->exp.id),
catexplist(mkexptypel(idw),ul->exp->next)));

int p;
char *id, *idw, *pid, *a, *b, *c, +emalloc();
char *mkbuffervar(), *object();
ExpType *ulist, *exp, *last, *mkexptypel(), *catexplist () ;
ExpType *objexp, *fieldexp;
ExpSequence *ul;
LocalDef *mksimpledef(),
HodeType *growdefs();
if (strcmp(s,"rewrite") == 0)
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if (strcmp(s,"unpack")
else p = USERDEFIHED;
ulist = seqtoexp(u);
id = ulist->exp.id;
idw = mkbuffervar(id);
switch (p) {
case REWRITE: •' /♦ rewrite(F) */

return growdefs(n,mksimpledef(id,HULL));
break;

case PUT: /* put(F) */
exp = catexplist(mkexptypel(id).mkexptypel(id .)) ;
return growdefs(n,mksimpledef(id,exp));
break;

case RESET:
case GET: /* reset(F) or get(F) */

return growdefs(n,mksimpledef(idw,u->exp));
break;

case READL1I:READ:if (isfilevar(id) == 0)
id = "input";
idw = "input"";

p = REWRITE;
*i p = RESET;
p = PUT;
p = GET;
p = READ;

’ p = READLH;
p = WRITE;
p = WRITELII;

p = PAGE;
(strcmp(s,"new") == 0) p = HEW;
(strcmp(s,"dispose") == 0) p = DISPOSE;

p = PACK;
p = UNPACK;

{ /* standard output */

case
{ /★ standard output */

65

break;

= u->next;
HULL) {

} else u
if (u->next == HULL) { /'• write(F.E) or write(E) »/

n = growdefs(n,mksimpledef(idw,u->exp));
return growdefs(n,mksimpledef (id,catexplist(mkexptypel (id) ,

mkexptypel(idw))));
or write(El,E2»..,En) ■/

>break;
WRITE:
if (isfilevar(id) == 0)

id = "output”;
idw = "output*";

else n = growdefs(n,mksimpledef(object(ul->exp->exp.id) ,
catexplist(mkexptypel(obj ect(ul->exp->exp.id)),
catexplist(mkexptypel(idw),ul->exp->next))));

n = growdef s(n,mksimpledef (idv/,mkexptypel (id))) ;

else { /♦ write(F,El,E2...En)
exp = u->exp;
for (ul = u->next; ul->next != HULL; ul = ul->next)

exp = catexplist(exp,ul->exp);
last = ul->exp;
exp = catexplist(exp,last);
n = growdefs(n,mksimpledef(id,catexplist(mkexptypel(id),exp)));
return growdefs(n.mksimpledef(idw,last));

else { /* writein(El,E2...,En)
exp = u->exp;
for (ul = u->next; ul->next ’= HULL; ul = ul->next)

exp = catexplist(exp,ul->exp);
last = ul->exp;
exp = catexplist(exp,last);
n = growdefs(n,mksimpledef(id,catexplist(mkexptypel(id).exp)));
n = growdefs(n.mksimpledef(idw,1ast));
return growdefs(n,mksimpledef(id,catexplist(mkexptypel(id),

mkexptypel(”end-of-line”))));

else u = u->next;
if (u == HULL) /* writein(F) */

return growdefs(n,mksimpledef(id,
catexplist(mkexptypel(id),
mkexptypel("end-of-line”))));

if (u->next == HULL) { /* writein(E) or writein(F.E) ♦ /
n = growdefs(n,mksimpledef(idw,u->exp));
n = growdefs(n,mksimpledef(id,

catexplist(mkexptypel(id).mkexptypel(idw))));
return growdefs(n,mksimpledef(id,catexplist(mkexptype1(id),

mkexptype1(”end-of-line”))));
or writeln(F,El,E2,..En) */

return n;
break;

case V/RITELH:
if (isfilevar(id) == 0)

id = "output";
idv; = "output''";

/* page(F) */

case

else {

}

case

66

h

case PAGE: /* page(F) ♦/
return growdef s(n.mksimpledef (id,catexplist (mkexptypel (id) ,

mkexptypel("end-of-page"))))I

if (u->next == HULL) { ,
if (fieldtype != HULL.

if (strcmp(object(id).fieldtype) == 0)
return growdefs(n.mksimpledef(object(id),

mkexptypel(object(id))));
n = growdefs(n.mksimpledef(object(id),objexp));
return growdefs(n.mksimpledef(fieldtype,

catexplist(fieldexp.objexp)));

else {
n

else ■{
exp « catexplist(catexplist(mkexptypel(pid).objexp),exp);
n = growdefs(n.mksimpledef(pid.HULL)) ;
return growdefs(n,mksimpledef(object(id),exp));

break;
HEW:if (u->exp->next != HULL) pid = object(id);
else pid = id;
objexp = mkexptypel(object(id));
fieldexp = mkexptypel(fieldtype);

/* new(P) */
■) {

= growdefs(n.mksimpledef(pid,HULL));
return growdefs(n.mksimpledef(object(id),

catexplist(mkexptypel(pid).objexp)));

) >
break;
DISPOSE:
if (u~>exp~>next != HULL) pid - object(id);
else pid = id;
objexp = mkexptypel(object(id));
fieldexp = mkexptypel(fieldtype);
if (u->next == HULL) ■{ /* dispose(P) */

if (fieldtype != HULL) {
if (strcmp(object(id).fieldtype) == 0)

} } Xelse { /♦ new(P,Cl,C2,..,Cn) */
exp = HULL;
for (ul = u->next; ul ’= HULL; ul = ul->next)

exp = catexplist(exp,mkexptypel(ul->exp->exp.id));
if (fieldtype != HULL) {

if (strcmp(object(id),fieldtype) == 0)
return growdefs(n.mksimpledef(object(id) ,

catexplist(objexp.exp))),
else {

n = growdefs(n,mksimpledef(object(id) ,
mkexptypel(object(id))));

return growdefs(n.mksimpledef(fieldtype,
catexplist(f ieldexp,catexplist(objexp.exp))));

}

return growdefs(n.mksimpledef(pid,mkexptypel("nil")));

67

= growdefs(n.mksimpledef(object(id),
catexplist(mkexptypel(pid),objexp)));

- - . f ___ — 1--- /if—4 1 >

/* pack(A.B.C) ♦/
i = (char *) emalloc(strlen(id)* 1) ;
trcpy(a,id);

> = u_ ^next\
• = (char 4) emalloc(strlen(u->exp- >exp.id)* 1);

else {
n

else {
exp = catexplist(catexplist(mkexptypel(pid).objexp),exp);
n = growdefs(n,mksimpledef(object(id),exp));
return growdefs(n,mksimpledef (pid , mkexptypel ("nil"))) ;

} >
break;

case PACK:
a
8u = u->next;
b = (char 4) emalloc(strlen(u->exp->exp.id)* 1);
strcpy(b,u->exp->exp.id);
u = u->next;
c = (char ♦) emalloc(strlen(u->exp->exp.id)•1);
strcpy(c,u->exp>exp.id);
return growdefs(n.mksimpledef(c.catexplist(mkexptypel(a).

mkexptypel(b))));

return growdefs(n.mksimpledef(object(id).objexp));
else •{

n = growdefs(n,mksimpledef(fieldtype,
catexplist(fieldexp,objexp)));

return growdefs(n.mksimpledef(object(id).objexp));

break;
case UBPACK: /♦ unpack (A, B , C) ♦•/

a = (char *) emalloc(strlen(id)+l);
strcpy(a,id);
u = u->next;
b = (char *) emalloc(strlen(u->exp->exp.id)+1);
strcpy(b,u->exp->exp.id);
u = u->next;
c = (char *) emalloc(strlen(u->exp->exp.id)+l) ;
strcpy(c,u->exp->exp.id);
return growdefs(n.mksimpledef(b.catexplist(mkexptypel(a),

} >
else { /* dispose(P,Cl,C2,..,Cn) */

exp = HULL;
for (ul = u->next; ul != BULL; ul = ul->next)

exp = catexplist(exp,mkexptypel(ul->exp->exp.id));
if (fieldtype != BULL) {

if (strcmp(object(id).fieldtype) == 0)
return growdefs(n,mksimpledef(object(id),

catexplist(objexp.exp)));
else {

n = growdefs(n, mksimpledef (fieldtype,
catexplist(f ieldexp,catexplist(obj exp,exp))));

return growdefs(n.mksimpledef(object(id),
mkexptypel(object(id)))) ;

mkexptypel(c))));

}

{

}

{

}

♦x;
{

68

}
attachdef(n.d)

HodeType *n;
LocalDef *d;

}
mkfieldtype(id,ex)

char *id;
ExtraldType *ex;

>
rmfieldtype()

setrepeatpexp(n,u)
HodeType *n;
ExpType *u;

VJithVarType *mkwithvars(s, x)
char *s;
ExtraldType

break;
default: /* expr defined procedure */

return growdefs(n.mkprocdef(s,u)) ;
break;

WithVarType *w;
w = (VithVarType ♦) emalloc(sizeof (Y-ithVarType)) ;
v.—>id = (char *) emalloc(strlen(s)+1);
strcpy(v;->id, s);
w->ext = x;
v;->borderline = OFF;

char *t;
t = fieldtype;
fieldtype = HULL;
free(t);

char *fobj;
if (ex->c != HULL) {

fobj = fieldobject(ex,id);
fieldtype = (char *) emalloc(strlen(fobj)+l);
strcpy(f ieldtype,fobj);

HodeType *t;
for (t = n; t->next ’= HULL; t ’ t->next);
t->pexp = u;

HodeType *t;
for (t = n; t->next != HULL; t = t->next) ;
growdefs(t,d);

{

}

{

D) <

69

w->next = HULL; return w;

else •{

>
popwithvarO
{

__..J == 110) {
if (x == HULL)

return growdefs(n.mksimpledef (s.u)) ;
else return growdefs(n,mksimpledef(determobj(s,x->c),

extraexplist 1(s,x,u)));

WithVarType *w;
for (w = withvarstack; w->borderline != Oil;
withvarstack = w->next;

w = w->next);

((ws->ext }= HULL)
(isf amily (s .determobj (ws->id, /;s->ext->c)) ==

found = YES;
key = ws->id;
keyobj = determobj(ws->id»ws->ext->c);
keyextra = ws->ext;

V/ithVarType *ws;
char *key, *keyobj;
ExtraldType *keyextra = HULL;
short found = HO;
for (ws = withvarstack;

(ws != HULL) && (found == HO);
ws = ws->next) {
if ((ws->ext == HULL) && (isfamily(s,ws->id) == 1)) {

found = YES;
key = ws->id;

} else if

}
pushwithvar(w ,b)

WithVarType *w;
short b;
if (b == Oil) w~>borderline = OH;
if (withvarstack == HULL) withvarstack = w;
else ■{

w->next = withvarstack;
withvarstack = w;

if (found

[/* found == YES */
if (x == HULL) {

if (keyextra == BULL)
return growdefs(n,mksimpledef(key ,

catexplist(mkexptypel(key),u)));

llodeType *withgrowdef s (n, s ,x ,u)
BodeType *n;
char *s;
ExtraldType *x;
ExpType *u;

>>

{

1) <

}

70

if (keyextra == HULL)
return growdef s(n,mksimpledef(key,

catexplist(mkexptypel(key),
catexplist(x->u,u))));

else if ((keyextra->u != HULL) && (keyextra->c == HULL))
return growdefs(n.mksimpledef(

key,
extraexplist1(key,keyextra,

catexplist(x->u,u))));
else return growdefs(n.mksimpledef(

keyobj,
extraexplistl(key.keyextra,

catexplist(x->u,u))));

else if ((keyextra->u != HULL) kk (keyextra->c == HULL))
return growdefs(n,mksimpledef(

key,
extraexplistl(key.keyextra,u)));

else return growdefs(n,mksimpledef(
keyobj,
extraexplistl(key.keyextra,u)));

>
l.’odeType *lastndptr(n)

else {

else {

}
ExpType *mkwithexptype(s,x)

char *s;
ExtraldType *x;

?.'ithVarType ♦ws;
char ’’key;
ExtraldType *keyextra;
short found = 110;
for (ws = withvarstack;

(ws != HULL) kh (found ==H0);
ws = ws->next)
if (isfamily(s,ws->id) ==

found = YES;
key = ws->id;
keyextra = ws->ext;

if (found == HO) {
if (x == HULL)

return mkexptypel(s);
else return extraexplist2(s.x);
[/♦ found == YES */
if (x == HULL)

return extraexplist2(key.keyextra);
else

return catexplist(extraexplist2(key.keyextra).
x->u);

IIodeType *n;
<

}

{

{

/* for goto ♦/

}

}

IIodeType ~nl, *n2;

f

71

IIodeType *t, *tl;
int dead;

if (nl->next == HULL) ■{
movel(nl,n2);
if (n2->next == HULL) ndptr = nl;
nl->next = n2->next;
updatedgel(nl->nid,n2->nid);
free(n2);
return nl;

IIodeType *t, -«tl;
int dead;

for (t = nl; t->next != HULL; t = t->next);
for (tl = nl; tl~>next->next != HULL; tl = tl->next);dead = t~>nid;
move2(n2,t);tl->next = n2;
free(t) ;
updatedge2(dead);
return nl;

IIodeType *append(nl ,n2)
IIodeType *nl, *n2;

IIodeType *t;

for (t = n; t->next != HULL; t = t->next); return t;

}
IIodeType *linkf lov.'l (nl ,n2)

IIodeType *linkl (nl ,n2)
IIodeType *nl, *n2;

}
IIodeType xlink2(nl,n2)

| * " ** -- T» 1 1 Tl O

< 1

IIodeType *t;
for (t = nl; t->next != HULL; t = t~>next); t->next = n2;return nl;

else {for (t = nl; t->next ’= HULL; t = t->next);
for (tl = nl; tl->next->next != HULL; tl= tl->next);dead = t->nid;
move2(n2,t);tl->next = n2;
free (t) ;
updatedgel(n2->nid,dead);
return nl;

llodeType *nl, *n2;
{

}

}

if

}

>

{

HULL) return n2;

}

llodeType *nl, *n2;

return append(nl,n2);

72

llodeType *t, *tl;

if (nl == HULL) return n2;
else if (n2 == HULL) return nl;
else •{

if (nl->next == HULL)

}
llodeType *linkf lov;3(nl ,n2)

llodeType *nl, *n2;
<

&& (foundl
-------- . .—&& (found2
addedge(last(nl),n2->nid);
return append(nl,n2);

else return linkl(nl,n2);

llodeType *t;
if (nl
else {

for (t = nl; t->next != HULL; t « t->next);
if (t->ldef != HULL) return append(nl,n2);
else return link2(nl,n2);

llodeType *t;
short foundl = 0, found2 = 0;OpCount *p;
for (t = nl; t->next != HULL; t = t->next);
if (n2 == HULL) {

t->gt = Oil;
return nl;

else if (t->gt == OH) {
t->gt = OFF;
return append(nl,n2);

else ■{
for (p = n2->operators;

((foundl == 0) && (p != HULL));
p = p->next)
if ((strcmp(p->name,"repeat..until") == 0) II

(strcmp(p->name,"while..do") == 0))
foundl = 1;

for (p = n2->operands;
((found2 == 0) kk (p != HULL));
p = p->next)
if ((strlen(p->name) > 1) kk

(p->name[strlen(p->name)-1] == ’:’))
found2 = 1;

(((t->ldef != HULL'
((t->ldef != HULL,

}
llodeType *linkf low2(nl ,n2)

llodeType *nl, *n2;

:: Wl

}
}

}

>

if

}.
}

73

== HULL)) {
YES) {

}
else

> else if

else {
for (t = nl; t->next->next != HULL; t = t->next);
for (tl = nl; tl->next != HULL; tl = tl->next);
if ((tl->ldef != HULL) I I (tl->pexp .'= HULL))

return append(nl,n2);
else {

movel(t,tl);
updatedge2(tl->nid);
t->next = n2;
free(tl);return nl;

if (n2 == HULL)
return nl;

else {
movel(nl,n2);
ndptr = lastndptr(nl);
nl->next = n2->next;
updatedgel(nl->nid,n2->nid);
free(n2);
return nl;

if ((isgotoflagOH(n2) == YES) &&
(isgotoflagOH(n3) == YES)) {

}
HodeType *linklabel(nl,n2)

HodeType *nl, *n2;
HodeType *lastndptr();

/♦ n2 is goto statement */

}
HodeType *linkifthenelse(nl,n2,n3,n4)

HodeType *nl, *n2, *n3. ■in4;
if ((n2 == HULL) && (n3 == HULL)) {

free(n4);
ndptr = nl;
return nl;
if ((n2 • = HULL) && (n3
if (isgotoflagOU(n2) ==

free(n4);
ndptr = n2;
return append(nl.n2);

else return append(nl, linkf lov.2(n2 ,n4)) ;
((n2 == HULL) kk (n3 ’» HULL)) {
(isgotoflagOH(n3) == YES) {
free(n4);
ndptr = n3;
return append(nl,n3);

else return append(nl,linkfIow2(n3,n4));
else {

}

{

}

}

llodeType *nl, *n2;
{

>

74

llodeType *tndptr;
LocalDef ♦ t1;
ExpType *t2;
OpCount +t3, »t4;

}
move2(nl,n2)

}
movel(nl,n2)

llodeType *nl, *n2;

int c;
if (n2 ! = BULL) {

if (nl->ldef == HULL) nl->ldef « n2->ldef;
else if (n2->ldef != HULL) {

for (tl = n2->ldef; tl->next != BULL; tl = tl->next); tl->next = nl->ldef;
nl->ldef = n2->ldef;

if (nl->pexp == BULL) nl->pexp = n2->pexp;
else if (n2->pexp != BULL) {

for (t2 = n2->pexp; t2->next 1 = BULL; t2 = t2 >next);

free(n4);
ndptr = n3;
return append(nl, linkf lov/2(n2,n3)) ;

else return append(nl,linkflow2(n2,linkflow2(n3,n4)));

llodeType *tndptr;
LocalDef *tl;
ExpType *t2;
OpCount *t3, *t4;
int c;
if (nl->ldef == BULL) nl->ldef = n2->ldef;
else {

for (tl = nl->ldef; tl->next ’= BULL; tl = tl->next);
tl->next = n2->ldef;

if (nl->pexp == BULL) nl->pexp = n2->pexp;
else {

for (t2 = nl->pexp; t2->next != BULL; t2 = t2->next) ;
t2->next = n2->pexp;

if (nl->operators == BULL) nl->operators = n2->operators;
else if (n2->operators ’= BULL) {

for (t3 = n2->operators; t3 != BULL; t3 = t3->next)
for (c = t3->occur; c > 0; c--)

operatorent(nl,t3->name);
if (nl->operands == BULL) nl->operands = n2->operands;
else if (n2->operands ’= BULL) {

for (t4 = n2->operands; t4 != BULL; t4 = t4->next)
for (c = t4->occur; c > 0; c--)

operandent(nl,t4->name);

}}

{

- u, u
t->nid;

{

}}

{

}

75

t2->next = nl->pexp;
nl->pexp = n2->pexp;

popbrroot()

tl->next->next != HULL; tl = tl~>next);
 '‘ ' > == HULL)) {

if (nl->operators = HULL) nl->operators = n2->operators;
else if (n2->operators != HULL) {

for (t3 = n2->operators; t3 != NULL; t3 = t3->next)
for (c = t3->occur; c > 0; c--)

operatorent(nl,t3->name) ;

HodeType *t;
for (t =
return 1

}
pushbrroot(n)

HodeType *n;

}
last(n)

HodeType *n;

rmlastnode(n)
HodeType *n;

BrRootStack *t;
char *emalloc();
t = (BrRootStack ♦) emalloc(sizeof(BrRootStack));
t->nd = n;
t->flag = VALID;
t->next = NULL;
if (brroot == HULL) brroot = t;
else { t->next = brroot;

brroot = t;

/♦ remove last empty node if it is empty */

HodeType *t, *tl;
if (n~>next != HULL) {

for (t = n; t->next != HULL; t = t->next) ;
for (tl = n; tl->next->next != HUI
if ((t->ldef == HULL) kit (t->pexp

movel(tl,t);
tl->next = HULL;
free(t);

if (nl->operands == BULL) nl->operands = n2->operands;
else if (n2->operands != HULL) {

for (t4 = n2->operands; t4 != HULL; t4 = t4->next)
for (c = t4->occur; c > 0; c--)

operandent(nl,t4->name);

n; t->next != HULL; t = t->next);

{ BrRootStack *t;

}

}

}

{

}

{ LabelTable *t;

76

t = brroot;
brroot = brroot->next;
free (t) ;

MemoryTable *tmp;
tmp = memtab;
memtab = memtab->next;
free(tmp);

LabelTable saddlabtab(bl,b2)
LabelTable *bl,*b2;

LabelTable *setlabtab(n)
char n;

}
popmemtabO

/****♦ memory.c **********♦♦**♦**♦♦***♦*♦*♦♦*♦♦**♦**♦+♦♦**♦♦♦*♦**♦****♦♦**/
#include ”sr.h"
#include ’’y.tab.h”

extern MemoryTable *memtab;
extern IdListType *glbls;

pushmemtab()

LabelTable ^lab;
char *emalloc();
lab = (LabelTable ♦) emalloc(sizeof(LabelTable));
lab->to = atoi(n);
lab->nid = 0;
lab->from = HULL;
lab->dead = HULL;
lab->next = HULL;
return lab;

memtab = mem;

MemoryTable *mem;
char *emalloc();
mem = (MemoryTable *) emalloc(sizeof(MemoryTable));
mem->lab = HULL;
mem->const = HULL;
mem->type = HULL;
mem->var = HULL;
mem->next = HULL;
if (memtab == HULL)
else {

mem->next = memtab;
memtab = mem;

{

ouic • auub^jju v ui , uz.
TypeTable *tl, *t2;

{

char *i;

{

77

for (t = bl; t->next != HULL; t = t->next);
t->next = b2;
return bl;

TypeTable *t;
for (t = tl; t->next !- HULL; t = t->next);
t->next = t2;
return tl;

TypeTable *t;
char *i, *emalloc();
t = (TypeTable *) emalloc(sizeof(TypeTable));
t->id = (char *) emalloc(strlen(str)+1);
strcpy(t->id,str);
free(str);
t->d = td;
t->next = HULL;
return t;

TypeDenoterType *d;
char *emalloc();
d = (TypeDenoterType +) emalloc(sizeof(TypeDenoterType));
d->tag =BASICTYPE;
d->d.id = (char *) emalloc(strlen(i)+1);
strcpy(d->d.id,i);
freed) ;
d->next = HULL;
return d;

}
TypeTable *settype(str,td)

char *str;
TypeDenoterType *td;

}
TypeTable *addtype(tl,t2)

}
TypeDenoterType *mkbasictype(i)

char *i;<

>
TypeDenoterType *mksubrangetype()

TypeDenoterType +mkenumeratedtype(1)
IdListType *1;
TypeDenoterType *d;
char *emalloc();
d = (TypeDenoterType *) emalloc(sizeof(TypeDenoterType));
d->tag = EHUKERATEDTYPE;
d->d.i = 1;
d->next = HULL;
return d;

}

{

{

{

DecListType *d;
{

memtab->var =d;

78

TypeDenoterType *mkfiletype(d)
TypeDenoterType *d;

TypeDenoterType *d;
char *emalloc();
d = (TypeDenoterType *) emalloc(sizeof(TypeDenoterType));
d->tag = SUBRADGETYPE;
d->next = HULL;
return d;

TypeDenoterType *dl;
char ^emalloc();
dl = (TypeDenoterType *) emalloc(sizeof(TypeDenoterType));
dl->tag = FILETYPE;
dl->next = d;
return dl;

}
TypeDenoterType *mkpointertype(i)

char *i;

TypeDenoterType ld;
char < emalloc();
d = (TypeDenoterType *) emalloc(sizeof(TypeDenoterType)).
d->tag = RECORDTYPE;
d->d.f = f;
d->next = HULL;
return d;

}
addvars(d)

}
TypeDenoterType *mkrecordtype(f)

DecListType *f;

TypeDenoterType *d, *dl;
char *emalloc();
d = (TypeDenoterType ♦) emalloc(sizeof(TypeDenoterType));
d->tag = POIIITERTYPE;
dl = (TypeDenoterType ♦) emalloc(sizeof(TypeDenoterType));
dl->tag = BASICTYPE;
dl->d.id = (char *) emalloc(strlen(i)+l);
strcpy(dl~>d.id,i);
freed) ;
dl->next = DULL;
d->next = dl;
return d;

DecListType *dl;
if (memtab->var == DULL)
else {

for (dl = memtab->var; dl->next ’= HULL; dl = dl->next) ;
dl->next = d;

}}

{

}
DecListType *catdeclist(vl,v2)

DecListType *vl, *v2;
{

return v2;

}

for c

for

for

}}

TypeDenoterType *dl;

79

chkglb(s)
char *s;

DecListType *v;
char *emalloc();
v = (DecListType *) emalloc(sizeof(DecListType));
v->idl = i;
v->d = d;
v->next = HULL;
return v;

DecListType *mkdeclist(i,d)
IdListType *i;
TypeDenoterType *d;

DecListType *t;
if (vl == DULL)
else {

for (t = vl; t->next != HULL; t = t->next);
t->next = v2;
return vl;

« mem->next) {
« c->next)

return;
v = v >next)

i ! = KULL; i » i >next)
.) s= 0) {

»= HULL) glbl

TypeDenoterType *findrecordtype(d)
TypeDenoterType *d;

IdListType *c, *i, *mkidlist(), *catidlist();
DecListType *v;
L'emoryTable *mem;
if (memtab->next != HULL) {

(c = memtab->const; •
if (strcmp(c->id,s)

(v = memtab->var;
for (i - V~>idl; x i-ull, x - x-’nex

if (strcmp(i->id,s) =- 0) return;
(mem = memtab•>next; mem •“ KULL; mem
for (c = mcm->const; c != HULL; c

if (strcmp(c->id,s) == 0)
for (v = mem>var; v !“ HULL;

for (i = v->idl; i KU’_
if (strcmp(i->id,s)

if (glbls == HULL) glbls = mkidlist(s);
else glbls = catidlist(glbls.mkidlist(s));

!= HULL; c = c->next)
= 0) return;

v != HULL; v = v->next)
i »= HULL; i = i >next)

{

{

0)

FILETYPE) return 1;
>

>

{

80

/* if id is a
/♦ ‘'key'1, then return 1.
/* return 0, otherwise.

}

isfilevar(v)
char *v;

isfamily(id,key)
char *id, *key;

}
char *findbasictype(d)

TypeDenoterType *d;

field of recordtype variable */
*/ */

TypeDenoterType *dl;
for (dl = d; dl != HULL; dl = dl->next)

if (dl->tag == BASICTYPE) return dl->d.id;

for (dl = d; dl != MULL; dl = dl->next)
if (dl->tag == RECORDTYPE) return dl;

return MULL;

TypeDenoterType *dl;
TypeDenoterType *findrecordtype();
1'emoryTable *m;
TypeTable *t;
DecListType *d;
IdListType *i;
char *ktype = BULL, *btype, *findbasictype();
for (m = memtab; m != DULL; m = m->next) {

} return 0;
}

if (stype != BULL)
for (t = m->type; t ’= BULL; t = t->next)

if (strcmp(stype,t->id) == 0) {
for (tl = t->d; tl !- BULL; tl = tl>next)

if (tl>tag == FILETYPE) return 1;

MemoryTable *m;
TypeTable *t;
TypeDenoterType *s, *tl;
DecListType *d;
IdListType *i;
char *stype = MULL, *findbasictypeO;
for (m = memtab; m != DULL; m = m->next) {

for (d = m->var; d != DULL; d = d->next)
for (i = d->idl; i != BULL; i = i->next)

if (strcmp(i->id,v) == 0) {
for (s = d->d; s != DULL; s = s->next) {

if ((s->tag == BASICTYPE) &&
strcmp(s->d.id,"text”) ==
return 1;

if (s->tag ==
stype = findbasictype(d->d);
break;

for
if

}

{

1)

{

81

} return 0;

}searchtype:
if (ktype != HULL) {

for (t = m->type; t != HULL; t = t->nezt)
if (strcmp(t->id,ktype) == 0) {

if ((dl = findrecordtype(t->d)) != HULL)
return inspectfields(dl,id);

}
char *object(v)

char *v;

> }
return 0;

inspectfields(fd,id)
TypeDenoterType *fd;
char *id;
TypeDenoterType *dl, +f indrecordtypeO ;
DecListType *d;
IdListType *i;
char *f indbasictypeO ;
if (fd ! = HULL)

for (d = fd~>d.f; d ’= HULL; d = d->next) {
for (i = d->idl; i != HULL; i = i->next)

if (strcmp(i->id,id) == 0) return 1;
if ((dl = findrecordtype(d->d)) != HULL)

return inspectfields(dl,id);
else if (isfamily(id,findbasictype(d->d))
return 1;

for (d = m->var; d != HULL; d = d->next)
(i = d->idl; i != HULL; i = i->next)
if (strcmp(i->id,key) == 0) {

if (dl = findrecordtype(d->d) != HULL)
return inspectfields(dl,id);

else { ktype = findbasictype(d->d);
goto searchtype;

else { ktype = key;
goto searchtype;

MemoryTable *m;
TypeTable *pl;
TypeDenoterType *t, *tl;
DecListType *p;
IdListType *i;
char *vtype = HULL, *findbasictypeO;
for (m = memtab; m != DULL; m = m->next) ■{

for (p = m->var; p != HULL; p = p->next)
for (i = p->idl; i != HULL; i = i->next)

}

{

{

82

}
return HULL;

}
return v;

= d->next)

if (8trcmp(i->id,v) == 0) {
vtype = findbasictype(p->d);
for (t = p->d; t->next != HULL; t = t->next)

if ' ‘ '

}

char *findobject(id,key)
char *id, *key;

if (strcmp(pl->id,vtype) == 0)
for (tl = pl->d; tl->next != HULL; t = t->next)

if (tl->tag == POIHTERTYPE)
return findbasictype(pl->d);

}
char *inspectfieldobject(fd,id)

TypeDenoterType *fd;
char *id;

(t->tag == POIHTERTYPE) {
t = t~>next;
return t->d.id;>break;

for (pl = m->type; pl != NULL; pl = pl->next)

>
char *ptrobject(td)

TypeDenoterType *td;
TypeDenoterType *d;
MemoryTable *m;
TypeTable *pl;
char *ptype;
for (d = td; d->next != HULL; d

if (d->tag == POIHTERTYPE)
return findbasictype(td);

ptype = findbasictype(td);
for (m = memtab; m ’= HULL; m = m->next)

for (pl = m->type; pl != HULL; pl = pl->next)
if (strcmp(pl->id,ptype) == 0)

return ptrobject(pl->d);

TypeDenoterType +dl, *findrecordtype();
DecListType *d;
IdListType *i;
char -*f indbasictypeO ;
if (fd ! = HULL)

for (d = fd->d.f; d !- HULL; d - d->next) {
for (i = d->idl; i !■ HULL; i » i->next)

if (strcmp(i->id,id) =■ 0)
return ptrobject(d->d);

if ((dl = findrecordtype(d->d)) != HULL)
return inspectfieldobject(dl,id);

{

}

}}}

{

}

83

1
2

} return i;

}
char *fieldobject(ex,key)

ExtraldType *ex;
char +key;

exp.

x = x->next);
IdListType *x;
for (x = ex->c; x->next != ULL;
return findobject(x->id,key);

searchtype:
if (ktype != NULL) {

for (t = m->type; t ! = HULL; t = t->next)
if (strcmp(t->id,ktype) == 0) {

if ((dl = findrecordtype(t->d)) != NULL)
return inspectfieldobject(dl,id);

ktype = findbasictype(t->d);
goto searchtype;

TypeDenoterType *dl, *findrecordtype();
HemoryTable *m;
TypeTable *t;
DecListType *d;
IdListType *i;
char *ktype = DULL, *btype, *findbasictype();
for (m = memtab; m ’= HULL; m = m->next) {

for (d = m->var; d != HULL; d = d->next)
for (i = d->idl; i != HULL; i = i->next)

if (strcmp(i->id,key) == 0) {
if (dl = findrecordtype(d->d) != HULL)

return inspectfieldobject(dl,id);
else { ktype = findbasictype(d->d);

goto searchtype;

IdListType *tmp;
if (i == HULL) i = j;
else {

for (trap = i; tmp->next != HULL; tmp = tmp->next);
tmp->next = j;

Q ♦ 4-4*4 «.****i*********H*****M**4 * * + l i I * <* * 4 « 11 ▼ * 4 t|**ti*i /
#include "sr.h"
flinclude "y.tab.h"
Adefine BUILTIHAdeline USERDEFIHED
IdListType *catidlist(i,j)

IdListType *i, ♦j;
{

{

{

/* yes */

IdListType *lst;

0) {

u = v;

84

}

ExpType *mkexptypel(s)
char *s;

}
IdListType *mkidlist(s)

char + s;

} return newlst;

IdListType *i;
char *emalloc();
i = (IdListType *) emalloc(sizeof(IdListType));
i->id = (char *) emalloc(strlen(s)+1);
strcpy(i->id,s);
i->next = HULL;return i;

}
ExpType =*catexplist(u, v)

ExpType *u, *v;

IdListType *mkidset(1st)
IdListType *lst;

<

ExpType *tmp;
if (u =» HULL) i
else {for (tmp = u; tmp->next != HULL; tmp » tmp->next); tmp->next = v;
}return u;

ExpType *u;
char *emalloc();
u = (ExpType *) emalloc(sizeof(ExpType));

}
isinset(id,1st) char *id; IdListType *lst;

IdListType *newlst = HULL, *nl, *n2, *mkidlist();
for (nl = 1st; nl ’= HULL; nl = nl->next)

if (newlst =- HULL)newlst = mkidlist(nl->id);
else if (isinset(nl->id,newlst) == 0) { /* if not in the set */

for (n2 = newlst; n2->next != HULL; n2 = n2->next) ; n2->next = mkidlist(nl->id);

IdListType *n;
for (n = 1st; n != HULL; n = n->next) if (strcmp(id,n->id) == 0) return 1;
return 0; /* no */

<

{

{

{

85

u->exp.id = (char ♦) emalloc(strlen(s)+l);
strcpy(u->exp.id,s);
u->tag = IDTAG;
u->next = HULL;
return u;

return p;

ExpType *u;
FuncExp *f;
char *emalloc();
u = (ExpType *) emalloc(sizeof(ExpType));
f = (FuncExp *) emalloc(sizeof(FuncExp));
f->funcid = (char *) emalloc(strlen(s)+1);
strcpy(f->funcid,s);
f->exps = q;
u->exp.fexp = f;
u->tag = FU1JCTAG;
u->next = HULL;
return u;

}

ExpType *mkexptype2(s,q)
char *s;
ExpSequence *q;

}
ExpType *seqtoexp(s)

ExpSequence *s;

}
ExpSequence *catexpseqlist(p,q)

ExpSequence *p, *q;

p = q;
p; tmp->next •= HULL; tmp = tmp->next);
)->next = q;

}
ExpSequence *mkexpseq(u)

ExpType *u;

ExpSequence *sl;
ExpType *u = HULL, *n, +mkexptypel(). “catexplist () ;
ExpType *seqtoexp();
for (si = s; si != HULL; si = sl->next)

for (n = sl->exp; n != HULL; n = n->next) {
if (n->tag == IDTAG)

ExpSequence *tmp;
if (p == HULL)
else {

for (tmp =]
tmp

ExpSequence +q;
q = (ExpSequence *) emalloc(sizeof(ExpSequence));
q->exp = u;
q->next = HULL;
return q;

{

{

{

86

ExtraldType *e;
IdListType *mkidlist();
char *emalloc();

IIIIIIIIII

> return u;

u = catexplist(u.mkexptypel(n->exp.id));
else if (n->tag == FUNCTAG)

u = catexplist(u,seqtoexp(n->exp.fexp->exps));

ExpType *mkfunctionexp(s,q)
char *s;
ExpSequence *q;
int p;
if ((strcmp(s,"abs") == 0)

(strcmp(s, "sqr") == 0)
(strcmp(s,”sin”) == 0)
(strcmp(s,"cos") == 0)
(strcmp(s,"exp") == 0)
(strcmp(s,"In") == 0) II
(strcmp(s,"sqrt") == 0) ||
(strcmp(s,"arctan") == 0) ||
(strcmp(s,"odd") == 0) I I
(strcmp(s,"eof") == 0) II
(strcmp(s,"eoln") == 0) II
(strcmp(s,"trunc") == 0) ||
(strcmp(s,"round") == 0) ||
(strcmp(s,"ord") == 0) I I
(strcmp(s,"chr") == 0) I I
(strcmp(s,"succ") == 0) II
(strcmp(s,"pred") == 0))
p = BUILTI1I;

else p = USERDEFIliED;
if (p == BUILTIII)

return seqtoexp(q);
if (p == USERDEFIHED)

return mkexptype2(s,q);

}
ExtraldType *mkextraid2(s)

char *s;

ExtraldType ^mkextraidl(u)
ExpType *u;
ExtraldType •e;
char *emalloc();
e = (ExtraldType *) emalloc(sizeof(ExtraldType));
e->u = u;
e->c = HULL;
return e;

{

{

{

{

}

}

87

}
ExtraldType *mkextralist(el,e2)

ExtraldType *el, *e2;

} return el;

else if (strcmp(sl, == 0) ■{
s = (char +) emalloc(strlen(sl)+1) ;
strcpy(s,si) ;
strcat(s,s2);

}
char *mkbuffervar(si)

char *sl;

char *mklabelopnd(sl)
char *sl;

char >mkcaseconstopnd(sl,s2)
char *sl, ^s2;

else if (strcmp(sl,"-”) == 0) {
s = (char *) emalloc(strlen(sl)+1);
strcpy(s,si);
strcat(s,s2);

char *s;
s = (char *) emalloc(strlen(sl)+l);
strcpy(s,si);
strcat(s,'•*");
return s;

char *s;
s = (char *) emalloc(strlen(si)+1);
strcpy(s,si);
strcat(s,":");
return s;

e = (ExtraldType *) emalloc(sizeof(ExtraldType));
e->u = NULL;
e->c = mkidlist(s);
return e;

IdListType *tc;
el->u = (IdListType *) catexplist(el->u,e2->u);
if (el->c == HULL) el->c = e2->c;
else {

for (tc = el->c; tc->next != HULL; tc = tc->next) ;
tc->next = e2->c;

char <s;
if (si == HULL) {

s = (char <) emalloc(strlen(»2) + l) ;
strcpy(s,s2);

{

/♦ record variable */

0) <fc& (isfilevar(s) == 1)) /^buffer*/

/♦ pointer */

}

*x;
{

}

}

88

strcat (s, ”: '•) ;
return s;

return mkbuffervar(id);
else if (strcmp(ex->id,”“”) == 0)
return object(id);
else return id;

if (x »= HULL)
return catexplist(mkexptypel(s),x->u);

else return mkexptypel(s);

}
char *determobj(id,ex)

char *id;
IdListType *ex;
if (ex == HULL) return id; /* simple variable */
else if ((strcmp(ex->id,”“") == 0) && (isfilevar(id) == 1))

/* buffer variable */
/* pointer variable */

ExpType *extraexplist2(s,x)
char *s;
ExtraldType
char +determobj();
ExpType ^mkexptypel(), *catexplist();
if ((x ! = HULL) && (x->c •= HULL)) {

if ((strcmp(x->c->id, '•"") 0) kti (isf ilevar(s) == 1))
return catexplist(mkexptypel(determobj(s,x->c)),x->u);

if (strcmp(x->c->id,"“”) == 0)
return catexplist(mkexptypel(s),

catexplist(mkexptypel(determobj(s,x->c)),x->u));

}
ExpType *extraexplistl(s,x,u)

char *s;
ExtraldType *x;
ExpType *u;
char *determobj();
ExpType *mkexptype(), *catexplist();
if ((x ! = HULL) && (x->c != HULL)) {

if ((strcmp(x->c->id, ”■*") == 0) 11 '1
return catexplist(x->u,u);

else if (strcmp(x->c->id,”“") == 0)
return catexplist(mkexptypel(s),

catexplist(mkexptypel(determobj(s,x->c)),
catexplist(x->u,u)));

else /* record */
return catexplist(mkexptypel(s),catexplist(x->u,u));

else if ((x != HULL) && (x->u != HULL)) /* array */
return catexplist(mkexptypel(s),catexplist(x->u.u));

else return u;

{

}

{

int dead;

memtab->dead = d;

89

t = (OriginList *) emalloc(sizeof(OriginList));
tp = tmp->from;
tmp->from = t;
tmp->from->n = n;
tmp->from->next = tp;

}
adddeads(dead)

int dead;
< OriginList *d;

char *emalloc();
d = (OriginList *) emalloc(sizeof(OriginList));
d~>n = dead;
d->next = NULL;
if (memtab->lab
else {

d->next = memtab->dead;
memtab->dead = d;

else {

}
destlist(s,n)

char *s;
UodeType *n;
LabelTable *t;
OriginList *tp, *td;
for (t - memtab->lab; t~>to != atoi(s); t = t->next);
t->nid = n->nid;
if (t->dead != HULL)

for (td = t->dead; td ?= HULL; td = td->next)
updatedge3(n->nid,td->n);

for (tp = t->from; tp •= HULL; tp = tp >next)
addedge(tp->n,n~>nid);

t->from = l.'ULL;

LabelTable *tmp;
OriginList *t, *tp;
char *emalloc() ;
for (tmp = memtab->lab; tmp->to •= atoi(s); tmp = tmp->next);
if (tmp->nid != 0) addedge(n,tmp->nid);
else if (tmp->from == HULL) {

tmp->from = (OriginList *) emalloc(sizeof(OriginList));
tmp->from->n = n;
tmp->from->next = HULL;

== HULL)

/**** branch.c *******♦♦♦***♦♦**♦♦*♦♦*♦♦♦*♦****♦*♦*♦***♦♦***♦♦♦♦*♦*******♦/
#include ”sr.h”
#include "y.tab.h"
extern HodeType *ndptr;
extern MemoryTable *memtab;
gotobranch(s,n)

char *s;
int n;

>

{

}

int x, y;

if (found

}
}

{

}

90

t^next != NULL; t = t->next) ;
return YES;

/«**** ed|
ftinclude '

}
updatedgel(alive.dead)

int alive.dead;

e = e->next) {

Ige.c ***/
 "sr.h”

#include "y.tab.h"
extern UnitRepType *unitstack;
extern MemoryTable *memtab;
addedge(x,y)

int x, y;
{

}
isgotoflagOH(n)

llodeType *n;

Edge Je;
LabelTable +b;
OriginList <f;
for (e = unitstack->ufs->eg; e !» HULL; e » e->next) {

if (e->from == dead) {
e->from = alive;
if (e->from == e->to) {

e->from = DELETED;
e->to = DELETED;

llodeType *t;

for (t = n;
if (t->gt == Oil)
else return 110;

} >
for (e = unitstack->ufs~>eg; e != HULL;

Edge *eg, *t;
short found = 0;
char *emalloc();
eg = (Edge *) emalloc(sizeof(Edge));
eg->from = x;
eg->to = y;
eg->next = HULL;
if (unitstack->ufs->eg == HULL) unitstack->ufs->eg = eg;
else {

for (t = unitstack->ufs->eg; t ’= HULL; t = t->next)
if ((t->from == x) && (t->to == y))

found = 1;
if (found == 0) {

for (t = unitstack->ufs->eg; t->next ’= HULL; t = t->next) ; t->next = eg;

}

b->nid = alive;
}

{

}

dead)
}

int alive, dead;
{

>next)e =

{

}

91

if (e->from == CASEHID)
if (Oto == CASEHID)

addcasedge(from,to)
int from,to;

else if (b->nid == dead)

if (b->nid
f__

if (f->n

Edge *e;
for (e = unitstack->ufs->eg; e != HULL;

e->from = from;
e->to = to;

if (e->to == dead) {
e->to = alive;
if (e->from == e~>to) {

e->from = DELETED;
e->to = DELETED;

}
updatedge2(dead)

int dead;

if (e->to == dead) {
addedge(e->from,backp);
e->fiom = DELETED;
e->to = DELETED;

e = e->next)

e = e~>next) {

e = e->next)

Edge *e;
int backp;
LabelTable *b;
OriginList *f;
for (e = unitstack->ufs->eg; e ’= HULL;

if (e->from == dead) {
backp = e->to;
e->from = DELETED;
e->to = DELETED;

}
updatedge3(alive.dead)

for (e = unitstack->ufs->eg; e != HULL;
/* e->to = backup; ♦/

Edge *e;
for (e = unitstack~>ufs~>eg; e != HULL;

if (e->to == dead) e->to = alive;

for (b = memtab->lab; b != HULL; b = b->next)
if (b->nid == 0) {

for (f = b->from; f ’= HULL; f = f->next)
if (f->n == dead) adddeads(dead) ;

for (b = memtab->lab; b != HULL; b = b->next) •{
if (b->nid == 0) {

for (f = b->from; f != HULL; f = f->next)
if (f->n == dead) f->n = alive;

{

unitstack->ufs->eg = e;

}

{

>

}
}

{

*

{

92

OpCount *opp, *t;
char *emalloc();

}
oprtinstall(n,op)

BodeType *n;
char *op;

}
addf irstedge(n)

int n;

/ * * * >;: *
flinclude

Edge *e;
char *emalloc();
e = (Edge *) emalloc(sizeof(Edge)) ;
e->from = START;
e->to = n;
e->next = BULL;
if (unitstack->ufs->eg == BULL)
else {

e->next = unitstack->ufs->eg;
unitstack->ufs->eg = e;

OpCount :‘opp;
for (opp = n->operators; opp ’= BULL; opp = opp >next)

if (strcmp(opp->name,op) == 0)
return opp;

return BULL;

t->next != BULL; t = t->next);
: == BULL) && (t->pexp == BULL)) {

1 node id into ’t’ if it is empty */
for (e = unitstack->ufs->eg; e != BULL; e = e->next)

if (e->to == t->nid) e->to => TERMINAL;
/♦ add edge (lastnode,’t’) if it is not empty ♦/
else addedge(t->nid,TERMINAL);

OpCnt . C ♦♦♦**♦***♦*♦*♦♦*♦*♦♦*♦♦*♦*♦♦****♦♦♦♦♦♦♦ ********* *********** /
'3 "sr.h"

tfinclude ’’y.tab.h"
OpCount *oprtlookup(n,op)

BodeType *n;
char *op;

}
addlastedge(n)

BodeType *n;
BodeType *t;
Edge *e;
if (n != BULL) {

for (t = n; ■
if ((t->ldef
/* convert last node id into

}

{

}

{

{

HULL) n->operands = opp;

}

93

OpCount *opp;
for (opp = n->operands; opp != HULL; opp = opp->next)

if (strcmp(opp->name,op) == 0)
return opp;

return HULL;

if ((opp = oprtlookup(n.op)) == HULL)
oprtinstall(n,op);

else opp->occur += 1;

operatorent(n,op)
HodeType *n;
char *op;
OpCount *opp, *oprtlookup();
if (n != HULL) {

}
operandent(n,op)

HodeType *n;

opndinstall(n,op)
HodeType >»n;
char *op;

}
OpCount *opndlookup(n,op)

HodeType *n;
char *op;

OpCount -*opp, ;)t;
char ■*emalloc();
opp = (OpCount ■*) emalloc (sizeof (OpCount)) ;
opp->name = (char) emalloc(strlen(op)♦1);
strepy (opp->name,op);
opp->occur = 1;
opp->next = HULL;
if (n->operands ==
else •{

for (t = n*>operands; t->next != HULL; t = t->next);
t->next = opp;

opp = (OpCount *) emalloc(sizeof(OpCount));
opp->name = (char *) emalloc(strlen(op)+1);
strepy(opp->name,op);
opp->occur = 1;
opp->next = HULL;
if (n->operators == HULL) n->operators = opp;
else {

for (t = n->operators; t->next != HULL; t = t->next);
t->next = opp;

{

}}

{

}}

{

}

{

{

9*1

/***** cd|
#include 1

char *op;
OpCount *opp, *opndlookup() ;
if (n != HULL) {

if ((opp = opndlookup(n.op)) == NULL)
opndinstall(n,op);

else opp->occur += 1;

}
prheader(h)

HeaderType *h;
printf(”(”);
printf("%s",h~>pname);
printf (“ , ") ;

}
prunitrep(p)

UnitRepType *p;
printf("(”);
prheader(p->interface);
printf(",\n");
prufs(p->ufs);
printf(”)”);

Igen.c ******♦♦♦♦***♦♦*♦♦♦♦♦♦**♦*♦♦*♦♦♦♦*♦*♦♦*♦♦*♦*♦♦*♦♦♦***.******/
_______ “sr.h"
#include "y.tab.h”
extern UnitRepType *unitrep;
codegenerate()

UnitRepType *tmp;
printf("{");
for (tmp = unitrep; tmp != HULL; tmp = tmp->next) {

prunitrep(tmp);
if (tmp->next != HULL) printf (”,\n ’’) ;

printf(”}\n");

caseopcnt(n,d)
I’odeType *n;
IdListType *d;

char *s;
IdListType *i;
for (i = d; i != HULL; i = i->next) {

operandent(n,i->id);
if (i->next != HULL) operatorent(n,",") ;

{

}

{

}

{

{

95

prseqofid(h->fparams);
printf (”, ”) ;
prsetofid(h->globals);
printf (•') ") ;

DodeType *t;IdListType ♦vpl;
printf ("{”) ;
printf (" (s , <’’) ;
for (vpl = vp; vpl != HULL; vpl = vpl->next) ■{

printf("(");

}
prnodeset(n,vp)

HodeType *n;
IdListType *vp;

}
prseqofid(i)

FPListType *i;
IdListType *t;
printf(”<”);if (i ’= HULL)for (t = i->fp; t != HULL; t = t->next) {

printf ("*/,s" ,t->id) ;
if (t->next != HULL) printf(’*,”);

printf(”>”);
}
prsetofid(i)

IdListType *i;
IdListType *t;
printf("{”);
for (t = i; t != HULL; t = t->next) {

printf ("7,s" , t->id);
if (t->next != HULL) printf(",**);

printf("}");
}
prufs(p)

UnitFlowStruct *p;
printf(" (");
prnodeset(p->nd,p->s);
printf(",\n");
predgeset(p->eg);
printf(",\n”);
printf(" s,\n");
printf(" t");
printf(")”);

}

}

{

SimpleDef *d;

96

) >
printf(">");

>
prsimpledef(d,vp)

>
prlocaldef(d,vp)

LocalDef *d;
IdListType -»-vp;

prnode(n,vp)
IIodeType *n;
IdListType *vp;
printf (" (");
printf("%d",n->nid);
printf
prlocaldef(n->ldef,vp);
printf(",\n ”);
prexptype(n->pexp,vp) ;
printf(",\n");
printf (” (");
prhalstinfo(n->operators);
printf(”,\n ") ;
prhalstinfo(n->operands);
printf (")");
printf(")");

printf ("7,8 , vpl->id);
printf(",<");
printf ("7,s" , vpl->id) ;
printf(">)") ;
if (vpl->next •= HULL) printf(",");

printf(">,<>,0)\n");
for (t = n; t •= NULL; t = t->next) {

prnode(t,vp);
if (t->next != NULL) printf(",\n");

printf("\n (t,<>,<>,0)");
printf("}");

LocalDef *t;
int ent = 0;
printf("<");
for (t = d; t != NULL; t = t>next) {

if (t->tag == SDEFTAG) prsimpledef(t->def.sdef,vp);
else if (t->tag == PDEETAG) prproedef(t->def.pdef,vp);
if (t->next != NULL) printf(",");
cnt++;
if ((ent >= 3) && (t->next •= NULL)) { printf("\n ");

ent = 0;

{

{

{

}

}

{

{ ExpSequence *t;

97

IdListType *vp;
printf("(");
if (isvalueparam(d->varid,vp)
else printf ("7#s" ,d->varid) ;
printf
prexptype(d->sexp,vp);
printf(")”);

}
prfuncexp(u,vp)

FuncExp u;
IdListType <vp;
printf("(”);
printf ("7,s" , u->funcid) ;
printf(",");
prexpseq(u->exps,vp);
printf(")");

ExpType *t;
printf("<");
for (t = u; t != HULL; t = t->next) {

if (t->tag == IDTAG) {
if (isvalueparam(t->exp.id,vp)

printf ("7»s ' " , t->exp. id) ;
else printf ("7»s" , t->exp id);

else if (t->tag == FU1ICTAG)
prfuncexp(t->exp.fexp,vp);

if (t->next != HULL) printf(",”);

printf(">”);

>
prprocdef(d,vp)

ProcDef *d;
IdListType *vp;
printf (" ('•) ;
printf ("7oS" ,d->procid) ;
printf ('*, ") ;
prexpseq(d->pexp,vp);
printf(")”);

== YES)

}
prexpseq(u,vp)

ExpSequence *u;
IdListType *vp;

}
prexptype(u,vp)

ExpType *u;
IdListType *vp;

== YES) printf (”7.s,d->varid);

if (t->next != HULL) printf(",”);

{

{

if ((ent);

98

}
predgeset(e)

Edge *e;

printf (’’>*’);

Edge *t;
int ent = 0;
printf (“
for (t = e; t

if ((t->f

prnodeid(n)
int n;

{

“• t •= HULL; t - t->next)
from ! = DELETED) I I (t->to != DELETED)) { printf("(") ;

prnodeid(t->from);
printf (”,*') ;
prnodeid(t->to);
printf ('•) “) ;
ent* +;
if (t->next !“ HULL) printf(M,H);
if ((ent >= 10) Ml (t->next •- HULL)) {

printf("\n ") ;
ent = 0;

printf("}");

prhalstinfo(h)
OpCount *h;
OpCount *t;
int ent = 0;
printf (•'■{”) ;
for (t = h; t != HULL; t = t->next) {

printf("(");
printf(”%s”,t->name);
printf (•', ") ;
printf ("7#d” ,t->occur) ;
printf(”)");
cnt++;
if (t->next != HULL) printf(”,");
if ((ent >= 8) && (t->next != HULL)) {

printf("\n ”);
ent = 0;

printf("}”);

printf (•'<") ;
for (t = u; t != HULL; t = t->next) {

prexptype(t~>exp,vp);

}

sr:

sr.hsr. o:
lex.o cnstrct.o memory.o branch.o exp.o edge.o opcnt.o cdgen.o: sr.h y.tab.h

99

/***** makefile ***♦************/
YFLAGS = -d
CFLAGS = -w
OBJS = sr.o lex.o cnstrct.o memory.o branch.o exp.o edge.

$(OBJS)
cc $(CFLAGS) $(OBJS) -Im -11 -o sr

if (n == START) printf("s");
else if (n == TERMINAL) printf ("t") ;
else printf ("7,d" ,n) ;

/&**** pp j **♦*******************/
%{#include <ctype.h>
5start skip
capital
moreliteral
liteial
begincomments
commentson
endcomments
morecomments

o opcnt.o cdgen.o

{;}
{BEGIII 0;}
{;}
{yymoreO ;}
{printf("Xs".yytext);>
{printf("%c",tolowerfyytext[0])) ;}
{BEGIII SKIP;}

XX <SKIP>{commentson}
<SKIP>{endcomments}
<SKIP>{morecomments}
{moreliteral}
{1iteral}
{capital}
{begincomments}

[A-Z]
I \nl* \(VI\{ £

Test Programs and ResultsB
B.l

100

The Simplest Program Segments
program simplestmt;
begin

stmt
end.

{((simplestmt, o,{}),
({(s,o.o.O)

(1,<(stmt,<>)>,

({(stmt,1),(begin..end,l),(.,1)},
z X.(t,0,0,0)},

{(S.i),(i,t)},

t))}

program ifthenstmt;
begin

if cond then stmt
end.

{((ifthenstmt,<>,{}),
({(s,o.o.O)

(l.<>,<cond>,
({(if..then,1),(begin..end,1),(.,1)},
{(cond.l)})),

(2,<(stmt,<>)>,
({(stmt,1)},

z xx(t,<>,<>,0)},
{(s, 1) ,(1,2),(2,t),(1,t)},
s,
t))}

program ifthenelsetest;
begin

if cond then stmtl
else stmt2;

end.
{((ifthenelsetest,<>,{}),

({(s,o.o.O)
(l.o,

<cond>,
({(if..then,1),(begin..end,1),(.,1)},
{(cond,1)})) ,

(2,<(stmtl,<>)>»

({(stmtl,1)},
{})),

(3,<(stmt2,o)>,

({(stmt2,l),(else.l),(;,1)},
{}))

101

(t, 0,0,0)},
{(s,1),(1,2),(2,t),(1,3),(3,t)},
tj)}

program casestmt;
begin

case which of
one : smtml;
two : stmt2;
three : stmt3;

end
end.
{((casestmt, <> , {}) ,

({(s.<>,<>.0)
(1.0,<which>,

({(case..of..end,1),(begin..end, 1) , (. , 1)},
{(which,1)})),

(2,<(smtml,<>)>,
({(smtml,1)},
{(one:,1)})),

(3,<(stmt2,<>)>,
o.({(stmt2,l),(;,1)},
{(two:,1)})),

(4,<(stmt3,<>)>,
({(stmt3.1),(;,2)},
{(three:,1)}))

(t,0,0,0)},
{(s,l),(l,2),(2,t),(l,3).(3,t).(1.4).(4,t)}.
tj)}

program repeatstmt;
begin

repeat
stmt

until cond
end.
{((repeatstmt,<>,{}),

({(s.o.o.O)
(1,<(stmt,<>)>,

<cond>,
({(stmt,1),(repeat..unti1,1),(begin..end.1),(.,1)},
{(cond,1)}))

(t,o.o.O)},
{(s,l),(l,t),(l,l)}.
tj)}

program whilestmt;
begin

while cond do
stmt

end.
{((whilestmt,<>,{}),

B.2

program simpleifthen;

102

program forstmt;
begin

for c := 1 to 100 do
dosomething

end.

({(s,0,0,0)
<cond>,
({(while..do,1),(begin..end,1),(.,1)},
{(cond.l)})),

(2,<(stmt,<>)>,
({(stmt,1)},

(t,<^.0)>,
{(s,1),(1,2),(2,1),(1,t)},
tj)}

{((forstmt,<>,{}),
({(s,0.0,0)

(l,<(c,<!>)>,
({(for..to..do,1),(begin..end,1),(., 1)},
{(1.1).(c.l)})).

(2,<>,
<c,100>,
({}.
{(100,1)})),

(3,<(dosomething,<>),(c,<c>)>,
({(dosomething,1)},

(t,<>,o,0)},
{ (s , 1) , (1,2) , (2,3) , (3,2) , (2, t)}.
s,
t))}

Sequencing
program simplesimple;
begin

stmt 1;
stmt2

end.
<((simplesimple,<>,{}),

({(s.<>,<>,0)
(1,<(stmtl,<>),(stmt2,<>)>,

({(stmtl,1) , (; , 1) , (stmt2,1),(begin..end,1),(. ,1)},
(t,<^,0)}.

{(s.D.d.t)},
s ,
t))}

103

begin
stmtl;
if cond then stmt2

end.

{((simpleifthen,<>,{)•) ,
({(s,<>,<>,0)

(1,<(stmtl,<>)>,
<cond>,
({(stmtl, 1) , (; ,1) , (if . . then, 1) , (begin, .end, 1) , (. , 1)}-,
{(cond.l)})),

(3,<(stmt2,<>)>,
({(stmt2,1)},

{(s,1),(1,3),(3,t),(1,t)},
s,
t))}

program simpleifthenelse;
begin

stmtl;
if cond then stmt2
else stmt3

end.
{((simpleifthenelse,<>,{}),

({(s,o.o.O)
(1,<(stmtl,<>)>,

<cond>,
({(stmtl,1), (; ,1),(if..then,1),(begin..end,1),(.,1)},
{(cond,1)})),

(3,<(stmt2,<>)>,
({(stmt2,1)},
{})).

(4,<(stmt3,<>)>,
({(stmt3,1),(else, 1)},

{(s.l),(l,3),(3,t),(l,4).(4.t)}.
s,
t))}

program simplecase;
begin
stmtl;
case man of

good : stmtl;
bad : stmt2;
normal : stmt3;

end
end.
{((simplecase,<>,{}),

({(s,o.o.O)
(1,<(stmtl,<>)>,

<man>,
({(stmtl,1),(;,1),(case..of..end,1),(begin..end,1),(.,1)},

101

{(man,1)})) ,
(3, <(stmtl, <>")>,

({(stmtl,1)},
{(good:,1)})),

(4,<(stmt2,<>)>,

({(stmt2,1),(;,!)},
{(bad:,1)})),

(5,<(stmt3,<>)>,

({(stmt3,l),(;,2)},
{(normal:,!)}))

(t,<>,<>,0)},
{(s.l),(1,3),(3,t),(1,4),(4,t),(1,5).(5,t)>,

t))}

program simplerepeat;
begin

stmtl;
repeat

stmt2
until cond

end.
{((simplerepeat,<>,{}),

({(s,<>,<>,0)
(1,<(stmtl,<>)>,

({(stmtl,1),(;,1),(begin..end,1) , (. ,1)},
{})).

(2,<(stmt2,<>)>,
<cond>,
({(stmt2,1),(repeat..until, 1)},
{(cond.l)}))

(t.o.o.O)},
{(s,1),(2,t),(2,2),(1,2)},
t))}

program simplewhile;
begin

stmtl;
while cond do stmtl

end.
{((simplewhile,<>,{}),
({(s.o.o.O)
(1,<(stmtl,<>)>,

({(stmtl,1),(;,1),(begin..end,1),(..1) },
{})),

(2,<>,
<cond>,
({(while..do,1)},
{(cond.l)})),

(3,<(stmtl,<>)>,
({(stmtl,1)},

105

, <>»(t,0,0,0)},
{(s,1),(2,3),(3,2),(2,t),(1,2)},
tj)}

program simplefor;
begin

stmtl;
for i := init to final do stmt2

end.
{((simplefor,<>,{}),

({(s,<>,<>,0)
(1,<(stmtl,o) , (i,<init>)>,

({(stmtl, 1) , (; ,1) , (for. .to. .do,l) , (begin. .end,l) , (. ,1)},
{(init,1),(i.l)})) ,

(3,0,
<i,final>,
({}.
{(final,1)})),

(4,<(stmt2,<>),(i,<i>)>,
({(stmt2,1)},
{}))(t,<>,<>,0)},

{(s,1),(1,3),(3,4),(4,3),(3,t)},
tj)}

program ifthensimple;
begin

if cond then stmtl;
stmt2;
stmt3;

end.
{((ifthensimple,<>,{}),
({(s,o.o.O)

(l.<>,<cond>,
({(if. then,1),(begin..end.l),(.,1)}.
{(cond,!)>)),

(2,<(stmtl,<>)>,
({(stmtl,1)} ,
{})).

(6,<(stmt2,<>),(stmt3,<>)>,
({(;,3)}.

{(s,1).(1,2),(2,6),(1.6),(6.t)},
tj)}

program ifthenifthen;
begin

if condl then stmtl;
if cond2 then stmt2

begin

106

.end.

{((if then if then, <> , {}•) ,
({(s,<>,<>,O)

(1,0,
<condl>,
({(if..then,1),(begin..end,1),(. , 1)1,
{(condl,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)1,
{})),(4,o,
<cond2>,
({(;,!)>,
{(cond2,1)})),

(5,<(stmt2,<>)>,
({(stmt2, 1)1,(U*U,O)>.

{(s,1),(1,2),(2,4),(1,4),(4,5),(5.t) ,(4,t)},
t))}

ifthenifthenelse;program
begin

if condl then stmtl;
if cond2 then stmt2
else stmt3

end.
{((if thenif thenelse ,<>, {}) ,
({(s,o,o,0)
(1,0,<condl>,

({(if..then,1),(begin..end,1),(.,1)1,
{(condl,1)})) ,

(2,<(stmtl,<>)>,
({(stmtl,1)1,
{})),

(4,o,
<cond2>,
«(;,!)},
{(cond2,1)})),

(5,<(stmt2,<>)>,
({(stmt2,1)},
{})),

(6,<(stmt3,<>)>,
({(stmt3,1),(else,1)1,

(t.<^,0)}.
{(s, 1),(1,2),(2,4).(1,4),(4,5),(5.t).(4.6).(6.t)},
tj)}

program ifthencase;

107

if cond then stmtl;
case a of

1: stmt2;
2: stmt3;
3: srmr4

end
end.
{((ifthencase,<>,{}),

({(s,0,0,0)
(l.o.<cond>,

({(if..then,1),(begin..end,1),(.,1)},
{(cond.l)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})),

(4,o,
<a>,
({(;,!)}.
{(a.l)})),

(5,<(stmt2,<>)>,
({(stmt2,1)},
{(1:.1)»).

(6,<(stmt3,<>)>,
({(stmt3,1),(;,!)},
{(2: ,1)»),

(7,<(srmr4,<>)>,
({(srmr4,1),(;,1)},
{(3:.l)}))

(t,0,0,0)}.
{(s,1),(1,2),(2,4),(1.4),(4.5),(5.t),(4.6).(6.t).(4.7).(7.t)}.
tj)}

program ifrepeat;
begin

if condl then stmtl;
repeat

stmt
until cond2

end.
{((ifrepeat,<>,{}),

({(s,<>,<>,0)
(l.o.

<condl>,
({(if..then,1),(begin..end.1),(.,1)1,
{(condl,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})),

(4,<(stmt,<>)>,
<cond2>,
({(;.!)>.
{(cond2,1)}))

108

(t, 0,0,0)},
{(B,1),(1,2),(2,4),(1,4),(4,t),(4,4)},
S ,
t))}

program ifthenwhile;
begin

if condl then stmtl;
while cond2 do stmt2

end.
{((ifthenwhile,<>,{})»

({(s,<>,<>,0)
(l.o,<condl>,

({(if..then.l),(begin..end,1),(.,1)},
{(condl,1)})) ,

(2,<(stmtl,o)>,
({(stmtl, 1)},
{})),

(4,0,<cond2>,
({(;,!)>,
{(cond2,1)})),

(5,<(stmt2,<>)>,
({(stmt2,1)},

(t,o,<>,0)},
{(s, 1), (1,2), (2,4), (1,4), (4.5), (5,4), (4, t)}.
tj)}

iffor;program
begin

if cond then stmtl;
for i := init downto final do stmt2

end.
{((iffor,<>,{}) ,

({(s,o.o.O)
(l.o,

<cond>,
({(if..then,1),(begin..end,1),(. , 1)} ,
{(cond.l)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})).

(4,<(i,<init>)>,
({(;,!)}.
{(init,1),(i,1)})),

(5.0.<i,final>,({}.
{(final,1)})),

(6,<(stmt2,<>),(i,<i>)>,
({(stmt2,1)},

*

109

program
begin

if condl then stmtl
else stmt2;
if cond2 then stmt3

end.

program ifthenelsesimple;
begin

if cond then stmtl else stmt2;
stmt3

end.

{((ifthenelseif ,<>,{}),
({(s,<>,<>.0)
(1.0.<condl>,

({(if..then,1),(begin..end,1),(.,1)},
{(condl,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})).

(3,<(stmt2,<>)>,
({(stmt2,1),(else,1)},
{»).

(5.<>.<cond2>,
({(;.!)>,
{(cond2,1)})) ,

(6,<(stmt3,<>)>,

{((ifthenelsesimple,<>,{}),
({(s,o.o.O)
(l.o,

<cond>,
({(if..then,1),(begin..end,1),(.,1)},
{(cond.l)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})),

(3,<(stmt2,<>)>,
({(stmt2,1),(else,1)},
{})).

(5,<(stmt3,<>)>,

<U!U.o».
{(s,1),(1,2),(2,5),(1,3),(3,5),(5.t)},
t))}

ifthenelseif;

(t,<RU.o)},
{(s,1),(1,2),(2,4),(1,4),(4,5),(5,6),(6,5),(5,t)},
tj)}

110

a
b
c

end
end.

{((ifthenelsecase, <> , {}) ,
({(s.o.o.O)
(l.o.<cond>,

({(if..then,1),(begin..end,1),(.,1)},

({(stmt3,1)},
(t,<>,<>.0)},

{(s, 1), (1,2), (2,5), (1,3), (3,5), (5.6), (6, t), (5, t)},
s,
t))}

program ifthenelseifthenelse;
begin

if condl then stmtl
else stmt2;
if cond2 then stmt3
else stmt4

end.
{((ifthenelseifthenelse,<>,{}),

({(s,o.o.O)
(l.o,

<condl>,
({(if..then,1),(begin..end,1),(.,1)},
{(condl,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})).

(3,<(stmt2,<>)>,
({(stmt2,1),(else,1)},
{})).(5,o,
<cond2>,
({(;,1)},
{(cond2,1)})),

(6,<(stmt3,<>)>,
({(stmt3,1)},
{})).

(7,<(stmt4,o)>,
({(stmt4,1),(else,1)},
{») ,(t,<>,o,0)}»

{(s , 1) , (1,2) , (2,5) , (1,3) , (3,5) , (5,6) , (6. t) , (5,7) , (7 , t)},
s,
t))}

ifthenelsecase;program
begin

if cond then stmtl else stmt2;
case status of

male;
female;
child

*

111

{(cond,!)})),
(2, <(stmtl,<>)>,

({(strati,!)},
{})).(3,<(stmt2,<>)>,
({(stmt2,1),(else,1)}, O)).(5,<>,<status>,
({(;.!)},{(status,1)})),

(6,<(male,<>)>,
({(male,!)},
{(a:,!)})),(7,<(female,<>)>,
({(female,!),(;,!)},
{(b:,!)})),(8,<(child,<>)>,
({(child,!),(;,!)},
{(c:,!)}))

(t,o,o,o)},
{(s, 1) , (1,2),(2,5),(1,3),(3,5),(5,6),(6,t),(5,7),(7,t),(5,8),
(8,t)}.
S,
t))}

program ifthenelserepeat;
beginif condl then stmtl else stmt2;repeat

stmt3until cond2end.
{((ifthenelserepeat,<>,{}),
«(b. <>,<>,0)
(l.o.<condl>,

({(if..then,1),(begin..end,!),(.,1)}»
{(condl,1)})) ,

(2,<(stmtl,<>)>,
({(stmtl.1)},
{})).(3,<(stmt2,<>)>,
({(stmt2,1),(else,1)},
{})).(5,<(stmt3,<>)>,<cond2>,
({(;.!)}»{(cond2,1)}))

(t.0,0,0)},
{(s,l),(l,2),(2,S),(1.3),(3,5),(5,t),(5,5)},
t))}

112

program ifthenelsewhile;
begin

if condl then stmtl else stmt2;
while cond2 do stmt3

end.
{((ifthenelsewhile,o,{}) .
({(s.o.o.O)
(1,0,

<condl>,
({(if. .then,l) , (begin. .end,l) ,(.,!)},
{(condl,1)})),

(2,<(stmtl,<>)>,
({(stmtl.1)}, O)).

(3,<(stmt2,<>)>,
({(stmt2,1),(else,I)},
{})),

<cond2>,
({(;,1)>,
{(cond2,1)})) ,

(6,<(stmt3,<>)>,
({(stmt3,1)},

(t,<>,<>.0)},
{(s ,1). (1,2), (2,5), (1,3), (3,5). (5.6), (6.5). (5, t)}.
s,
t))}

program ifthenelsefor;
begin

if cond then stmtl else stmt2;
for i := init to final do stmt3

end.
{((ifthenelsefor,<>,{}),
({(s.o.o.O)
(l.o,

<cond>,
({(if..then,1),(begin. .end.l).(.,1)}.
{(cond ,1)})) ,

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})),

(3,<(stmt2,<>)>,
({(stmt2,1),(else,1)}.
{»).

(5,<(i,<init>)>,
({(;.!)}.
{(init,l),(i,l)})),

(6.0,
<i,final>,(O.

113

program
begin

case what of
1: stmt 1;
2: stmt2;
3: stm.t3

end;
if cond then stmt4

end.
{((caseifthen,<>,{}) ,
({(s.o.o.O)
(1.0,<what>,

({(case. .of. .end,l) , (begin, .end, 1) , (. ,1)}*,

{(final,1)})),
(7,<(stmt3,<>),(i,<i>)>,

({(stmt3,1)},
(t,o.o.O)},

{(s,l),(1,2),(2,5),(1,3),(3,5),(5,6),(6,7),(7,6),(6,t)},
s,
t))}

program casesimple;
begin

case what of
1 : stmtl;
2,4 : stmt2;
3 : stmt3

end;
stmt4

end.
{((casesimple,<>,{}),
({(s.o.o.O)
(1.0.<what>,

({(case.. of..end,1),(begin..end,1) , (.,1)},
{(what,1)})),

(2,<(stmtl,<>)>,
({(stmtl, 1)},
<(1:,!)>)),

(3,<(stmt2,<>)>,
({(stmt2,!),(,,1). (;,1)},
{(2: , 1),(4:,1)})),

(4,<(stmt3,<>)>,
({(stmt3,1),(;,1)},
{(3:,1)})),

(6,<(stmt4,<>)>,
({(;.!)}.

(t,o.o.O)},
{(s,1).(1,2),(2,6),(1,3),(3.6),(1,4),(4,6),(6.t)}.
tj)}

caseif then;

114

program
begin

case what of
1: stmtl;
2: stmt2;
3: stmt3;

end;
if cond then stmt4 else stmt5

end.
{((caseifthenelse,o,{}),

«(s,<>,<>,0)
<what>,
({(case. of..end,1),(begin..end.1),(..1)1,
{(what,!)>)),

(2,<(stmtl,<>)>,
({(stmtl,1)1,{(1: .1)»).

(3,<(stmt2,<>)>,
({(stmt2,1),(;,1)1,
{(2:,1)})).

(4,<(stmt3,<>)>,
({(stmt3.1),(;,2)},
{(3:,1)»).

(6,<>,<cond>,
({(;,!)},
{(cond,1)})),

(7,<(stmt4,<>)>,
({(stmt4,1)},

{(what, 1)})),
(2,<(stmtl,<>)>,

({(stmtl,1)},
{(!:.!)»).

(3,<(stmt2,<>)>,
({(stmt2,l).(;,!)},
{(2:,1)})),

(4,<(stmt3,<>)>,
({(stmt3,1),(;,!)},
{(3:,1)})),

(6,0,
<cond>,
({(;,!)>.
{(cond.l)})),

(7,<(stmt4,<>)>,
({(stmt4,1)1,

(t,<^,0)>,
{(s.l),(1,2),(2,6),(1,3),(3,6),(1.4),(4.6),(6,7),(7,t),(6.t)},
t))}

caseifthenelse;

*

115

O)),
(8,<(stmt5,<>)>,

(■{(stmtS, 1) , (else ,1)},
(t,<>*<>,0)},

{(s, 1) , (1,2) , (2,6) , (1,3) , (3,6) , (1,4) , (4,6) , (6,7) , (7,t) , (6,8) ,
(8,t)},

s,
t))}

program casecase;
begin

case one of
+1: stmtl;
+2: stmt2;
+3: stmt3

end;
case two of

-1: stmt4;
-2: stmt5;
-3: stmt6

end
end.
{((casecase.o.O) ,

({(s,<>,<>,0)
(l.<>.<one>,

({(case..of..end,1),(begin..end,1),(.,1)} ,
{(one,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{(+1:,1)})),

(3,<(stmt2,<>)>,
({(stmt2,1),(;,1)},
{(+2:.l)})),

(4,<(stmt3,<>)>,
({(stmt3,!),(;,!)},
{(+3:.!)})).

(6,<>,
<two>,
{(tvo.l)})),

(7,< (stmt4,<>)>,
({(stmt4,1)},
{(-!:,1)})),

(8,<(stmt5,<>)>,
1),(;,1)},

{(-2:,1)})).
(9, <(stmt6,<>)>,

({(stmt6,!),(;,!)}.
(t.o.o.O)},

{(s,l),(1.2).(2,6),(l,3).(3,6),(l,4),(4,6).(6,7),(7.t),(6,8).

116

(8,t),(6,9),(9,t)},
tj)}

program caserepeat;
begin

case rec of
1: stmtl;
2: stmt2;
3: stmt3end;

repeat stmt4 until cond
end.
{((caserepeat,<>,{}),

({(s,0,0,0)
(l.o,<rec>,

({(case..of..end,1),(begin..end, 1) , (.,I)},
{(rec,!)})),

(2,<(stmtl,<>)>,
({(stmtl, 1)},
<<1:.1)})),

(3,<(stmt2,<>)>,
({(stmt2,!),(;,!)},
{(2:,1)})),

(4,<(stmt3,<>)>,
({(stmt3,!),(;,!)},
{(3:,1)})),

(6,<(stmt4,<>)>,
<cond>,
({(;.!)},
{(cond.l)}))

(t,<>.<>,0)},
{(s,1),(1,2),(2,6),(1.3),(3.6),(1.4),(4,6).(6.t).(6.6)}.
tj)}

program casewhile;
begin

case what of
1: stmtl;
2: stmt2;
3: stmt3

end;
while cond do stmt4

end.
{ ((casewhile, <>, {}) ,
({(s,o.o.O)
(l.o,

<what>,
({(case..of..end,1),(begin..end,!),(.,!)},
{(what,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{(1:,1)})),

«

«

117

(3,<(stmt2,<>)>,
({(stmt2,l),(;,1)},
{(2:,1)})),

(4,<(stmt3,<>)>,
({(stmt3,l),(;,1)},
{(3:,1)})).

(6,<>,<cond>,
{(cond,1)})),

(7,<(stmt4,<>)>,
({(stmt4,l)},

{(s, 1),(1,2),(2,6),(1,3),(3,6),(1,4),(4.6),(6,7),(7,6),(6.t)}.
tj)}

program casefor;
begin

case how of
1: stmtl;
2: stmt2;
3: stmt3

end;for i := init to final do stmt4
end.
{((casefor,o,{}),

({(s.<>,<>,0)
<how>,
({(case..of..end,1),(begin..end ,1) , (. , 1)1,
{(how,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
<(1:.1)})).

(3,<(stmt2,<>)>,
({(stmt2,1),(;,1)),
{(2: ,1)})),

(4,<(stmt3,<>)>,
({(stmt3,!),(;,!)},
<(3: .!)») .

(6,<(i,<init>)>,
«(;.!)>.
{(init,1),(i,1)})) ,

(7,o,
<i,final>,(O.
{(final,!)>)),

(8,<(stmt4,<>),(i,<i>)>,
({(stmt4,1)},
{}))

118

program repeatifthenelse;
begin

repeat stmtl until condl;
if cond2 then stmt2 else stmt3

end.
{((repeatif thenelse,<>,{}) ,

(t,<>,<>,0)},
{(s,l), (1,2), (2,6), (1,3), (3,6), (1,4), (4,6), (6,7), (7,8), (8,7),
(7,t)},

tj)}
program repeatsimple;
begin

repeat
stmtl

until cond;
stmt2

end.
{((repeatsimple,<>,{}),
({(s,o.o.O)
(1,<(stmtl,<>)>,

<cond>,
({(stmt1,1) , (repeat..until,1),(begin..end,l),(.,1)},
{(cond.l)})),

(3,<(stmt2,<>)>,

{(s,l),(1,3),(1,1),(3.t)},
t))>

program repeatif;
begin

repeat stmtl until condl;
if cond2 then stmt2

end.
{((repeatif,<>,{}),
({(s,o.o.O)

(1,<(stmtl,<>)>,
<condl>,
({(stmtl,1),(repeat..until,1),(begin..end.l),(.,1)},
{(condl,1)})),

(3,0.
<cond2>,
{(cond2,1)})).

(4,<(stmt2,<>)>,
({(stmt2,1)},

{(s.l),(1,3),(1,1),(3.4),(4,t).(3,t)},
s,
t))}

119

({(s,<>,<>,0)
(1,<(stmtl ,<>)>,

<condl>,
({(stmtl, 1) ,(repeat..until,1),(begin..end,1),(.,1)},
{(condl,1)})),

(3,<>,<cond2>,
«(;,!)}.
{(cond2,1)})),

(4,<(stmt2,<>)>,
({(stmt2,!)}-,O)),

(5,<(stmt3,<>)>,
(•{(stmt3,1) , (else, 1)},

(t,0,0,0)},
{(s, 1) , (1,3) , (1,1) , (3,4) , (4 ,t) , (3,5) , (5, t)},
t))}

program repeatcase;
begin

repeat
stmtl

until cond;
case what of

1: stmt2;
2: stmt3;
3: stmt4

end
end.
{((repeatcase,<>,{}),

({(s,0,0,0)
(1,<(stmtl,<>)> ,

<cond>,
({(stmtl,1),(repeat..until,1),(begin..end,1).(. .1)}.
{(cond.l)})),

(3,0,
<v.hat>,
({(;,!)},
{(what,1)})),

(4,<(stmt2,<>)>,

({(stmt2,1)},
<(1: ,1)»).

(5,<(stmt3,<>)>,

(<(stmt3,1),(;,1)},
{(2:.l)})),

(6,< (stmt4,<>)>,

({(stmt4,!),(;,!)},
<(3: ,1)»)

(t.<>,o.O)},
{(s , 1) , (1,3) , (1,1) , (3,4) , (4 , t) , (3,5) , (5, t) , (3,6) , (6, t)},
tj)}

.end.1),(.,!)},

120

program repeatrepeat;
begin

repeat stmtl until condl;
repeat stmtl until cond2

end.
{((repeatrepeat,<>,{}),

({(s,0,0,0)
(1,<(stmtl,<>)>,

<condl>,
({(stmtl,1),(repeat..until,1),(begin..end,1),(.,!)>,
{(condl,1)})),

(3,<(stmtl,<>)>,
<cond2>,
{(cond2.1)}))

(t,<>,<>,0)},
{(s,1).(1,3),(1,1),(3,t),(3,3)},
tj)}

program repeatwhile;
begin

repeat stmtl until condl;
while cond2 do stmt2

end.
{((repeatwhile,<>,{}),
({(s,o.o.O)

(1, <(stmtl,<>)>,
<condl>,
({(stmtl. 1) , (repeat. .until, 1) . (begin.
{(condl,1)})),

(3,<>,<cond2>,
«(;,!)},
{(cond2,1)})) ,

(4,<(stmt2,<>)>,
({(stmt2,1)},

z <») X.
(t,o,o,0)},

{(s. 1), (1,3), (1,1), (3,4). (4.3). (3.t)}.
s,
t))}

program repeatfor;
begin

repeat stmtl until condl;
for i:= init to final do stmt2

end.
{((repeatfor,<>,{}),

({(s.o,o,0)
(1,<(stmtl,<>)>,

<condl>,
({(stmtl,1) , (repeat..until.l),(begin..end.l),(. ,1)},
{(condl,1)})),

(3,<(i,<init>)>,

121

program whilesimple;
begin

while cond do stmtl;stmt2;end.

program
begin

while condl do stmtl;if cond2 then stmt2 end.
{((whileif,<>,{}),

({(s,<>,<>,0)
<condl>,
({(while, do,1),(begin..end,1),(.,1)},
{(condl,!)>)),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})),(4,o,
<cond2>,
{(cond2,1)})),

(5,<(stmt2,<>)>,

{((whilesimple,<>,{}),
({(s,o,o,0)(l,o,<cond>,

({(while..do,1),(begin..end,1),(.,1)},
{(cond.l)})),(2,<(stmtl,<>)>,
({(stmtl,1)},O)), (5,<(stmt2,<>)>,

{(s,1),(1,2),(2,1),(1.5).(5,t)},
tj)>

whileif;

({(;.!)}.{(init.l).(i.l)})),
(4,<>,<i,final>,(O,{(final,1)})),
(5,<(stmt2,<>),(i,<i>)>,

({(stmt2,I)},
(t.<^.0)>.

{(s.1),(1.3),(1.1).(3,4).(4,5),(5,4),(4,t)},
tj)>

122

({(stmt2,1)},
, <>»(t.<>,<>,0)},

{(s, 1) , (1,2) , (2,1) , (1,4) , (4,5) , (5, t) , (4 , t)},
s,
t))}

program whileifthenelse;
begin

while condl do stmtl;
if cond2 then stmt2 else stmt3

end.
{((whileifthenelse,<>,{}),
({(s,o.o.o)

(1,<>,<condl>,
({(while..do,l),(begin..end,l),(.,1)},
{(condl,1)})) ,

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})),(4,o,
<cond2>,
{(cond2,l)})),

(5,<(stmt2,<>)>,
({(stmt2,1)},O)).

(6,<(stmt3,<>)>,
({(stmt3,1),(else,1)},
{})) „(t ,<>,<>,0)},

{(s , 1) , (1,2) , (2,1) , (1,4), (4,5) , (5, t) , (4,6) . (6. t)}.
t))}

program whilecase;
begin

while cond do something;
case any of

10: come;
20: go;
30: stop

end
end.
{((whilecase,<>,{}),
({(s.o.o.O)
(1.0,

<cond>,
({(while..do,1),(begin..end,1),(.,1)},
{(cond.l)})),

(2,<(something,<>)>,
({(something,1)},
O)).

whilewhile;

123

({(s,<>,<>,6)
(1,0,<condl>,

({(while..do,l),(begin..end,!),(.,1)},
{(condl,1)})),

program
begin

while condl do stmtl;
while cond2 do stmt2

end.
{ ((whilewhile , <>, {}) ,

(4,<>,
<any>,
{(any.l)})),

(5,<(come,<>)>,
({(come, 1)},
{(10:,1)})),

(6,<(go,<>)>,
({(go,l),(;.l)},
{(20:,1)})),

(7,<(stop,<>)>,
({(stop,1),(;,1)},
{(30:,1)}))

(t,<>,<>,0)},
{(s,1),(1,2),(2,1),(1,4),(4,5),(5,t),(4,6).(6,t),(4.7),(7,t)},
t))}

program whilerepeat;
begin

while condl do stmtl;
repeat

stmt2
until cond2

end.
{((whilerepeat,<>,{}),
({(s.o.o.O)
(l.o,

<condl>,
({(while..do,l),(begin..end.l),(.,!)},
{(condl,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})),

(4,<(stmt2,<>)>,
<cond2>,
({(;,!)}.
{(cond2,1)}))

(t.o.o.O)}.
{(s, 1) , (1,2) , (2,1) , (1,4) , (4 , t) , (4,4) } ,
s,
t))}

124

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})),(4,0,<cond2>,
({(;.1)>,{(cond2,1)})),

(5,<(stmt2,<>)>,
({(stmt2,1)},(U*U.o)},

{(s,l),(1,2),(2,1),(1,4),(4,5),(5,4),(4,t)},
tj)}

program whilefor;
begin

while cond do stmtl;for i := init to final do stmt2 end.
{((whilefor,o,{}) ,
({(s,o.o.O)(l,o,<cond>,

({(while..do,1),(begin..end,1) , (. , 1)},
{(cond,1)})),

(2,<(stmtl,<>)>,
({(stmtl, 1)},
{»),(4,<(i,<init>)>,
«(;,!)).{(init,1),(i,1)})),

(5,0.<i,final>,
({),{(final,!)>)).

(6,<(stmt2,<>),(i ,<i>)>,
({(stmt2,1)},
{))) „(t.o.o.O)},

{(s,1),(1.2),(2.1),(1,4),(4,5),(5.6).(6,5).(5.t)}.
S,
t))}

program forsimple;
begin

for i := init to final do stmtl;stmt2end.
{((forsimple,<>,{}),

({(s, o.o.O)
(1 ,<(i,<init>)>,

({(for..to..do,l),(begin..end.l),(.,1)},

125

{(init,1),(i,1)})),
(2.<>,<i,final>,

({},
{(final,1)})),(3,<(stmtl,<>),(i,<i>)>,
({(stmtl,I)},
{})),

(5,<(stmt2,<>)>,
({(;,!)},

(t,<>,<>,0)},
{(s,1),(1,2),(2,3),(3,2),(2,5),(5,t)},
t))}

program forifthen;
begin

for i := init to final do stmtl;
if cond then stmt2

end.
{((forifthen,<>,{}),

({(s.o.o.O)
(l,<(i,<init>)>,

({(for..to..do,1),(begin..end.l), (.,1)}.
{(init,1),(i,1)})),

(2,<>,<i,final>,
({}.
{(final,!)>)),

(3,<(stmtl,<>),(i,<i>)>.
({(stmtl,1)},
{})),

(5,<>.<cond>,
({(;.!)},
{(cond.l)})).

(6,<(stmt2,<>)>,
({(stmt2,1)} ,

(t,<>,<>.0)}.
{(s ,1). (1,2), (2.3). (3,2). (2.5). (5,6), (6. t). (5. t)},
s,
t))}

program forifthenelse ;
begin

for i := init to final do stmtl;
if cond then stmt2 else stmt3

end.
{((forifthenelse,<>,{}),
({(s,o.o.O)
(1,<(i »<init>)>,

126

program
begin

for i := 1 to 22 do stmtl;case x ofconstl : stmt2;const2 : stmt3;const3 : stmt4endend.
{((forcase,<>,{}),

({(s,<>,<>,0)
(1. <(i.<!>)>,

({(for..to..do,l),(begin, .end.l),(•,1)}.
{(1,1) , (i , 1)»).

(2.0,<i,22>,
({>.{(22,1)})),

(3,<(stmtl,<>),(i,<i>)>,<>,
({(stmtl,1)},
{})),

(5,0.<x>,
({(;.!)},{(x.l)})),

(6,<(stmt2,<>)>,
({(stmt2,1)},
{(constl:,1)})),

(7,<(stmt3,<>)>,

({(for..to..do,1),(begin..end,1),(.,1)},
{(init.l),(i,l)})),

(2,<>,<i,final>,
({},{(final,1)})),

(3,<(stmtl,<>),(i,<i>)>,
({(stmtl,1)},
{})).(5,0,
<cond>,
({(;,!)}.{(cond.l)})),

(6,<(stmt2,o)>,
({(stmt2,1)},
{})).(7,<(stmt3,<>)>,
({(stmt3,1), (else,1)},

(U*U.O)}.
{(s,1),(1,2),(2,3),(3,2).(2,5),(5,6),(6.t),(5,7),(7,t)},
tj)}

forcase;

forwhile;

127

({(stmt3,l),(;,1)},
{(const2:,1)})),

(8,<(stmt4,<>)>,
({(stmt4,l),(;,1)},
{(const3:,1)}))

(t,<>.<>,0)},{(s,1),(1,2),(2,3),(3,2),(2,5),(5,6),(6,t),(5,7),(7,t),(5,8),
(8,t)},

tj)}
program forrepeat;
begin

for i := init to final do stmtl;repeatstmt2until condend.
{ ((forrepeat,<>,{}),
({(s,o.o.O)

(1 ,<(i,<init>)>,
({(for. .to. .do,l) , (begin, .end.l) , (.,1)},
{(init.l),(i.l)})),(2,o,<i,final>,
({},{(final,1)})),(3,<(stmtl,o) , (i,<i>)>,
({(stmtl,1)},
{})),(5,<(stmt2,<>)>,<cond>,
«(;,!)}.{(cond.l)}))(t,o.o.O)},

{(s, 1),(1,2),(2,3),(3,2),(2,5),(5,t),(5,5)},
S,t))}

program
beginfor i := init to final do stmtl;while cond do stmt2end.
{((forwhile,<>,{}),
({(s.o.o.O)

(1,<(i,<init>)>,
({(for..to..do,l),(begin..end.l) , (. .1)},
{(init,1),(i,1)>)),(2,o,<i,final>,
({}.{(final,1)})),(3,<(stmtl,o) , (i,<i>)>,

B.3

128

Nesting
ifnestedif;

({(stmtl,1)},
{>)),

(5,<>,<cond>,
«(;.!)}.
{(cond.l)})),

(6,<(stmt2,<>)>,
({(stmt2 , 1)},

(t,o*<>,o)},
{(s.l),(1,2),(2,3),(3,2),(2,5),(5,6),(6,5), (5,t)},
s,t))J

program
begin

if condl then

program forfor;
begin

for i := 1 to n do
stmtl;

for j := 100 downto m do
stmt2

end.
{((forfor,<>,{}),

({(s,o.o.O)
(l,<(i,<l>)>,

({(for..to..do,1),(begin..end.l),(.,1)},
{(1,1),(i.l)})),

(2,o,
<i,n>,(O,
{(n,l)})),

(3,<(stmtl,<>),(i,<i>)>,
({(stmtl, 1)},
{})).

(5,<(j,<100>)>,
({(;,!)},
<(100,1).(j,1)})),

(6,<>,
<j,m>,
(O,
{(m.l)})).

(7,<(stmt2,<>),(j,<j>)>,
({(stmt2, 1)},
{})) ,

(t,<>,o,0)},
{(s.l),(1,2),(2,3),(3,2),(2.5).(5.6),(6.7).(7,6),(6.t)},
t))}

end.

129

if cond2 then stmt end.

program ifthenelsenestedif;
begin

if condl then
if cond2 then stmtl
else stmt2

end.
{((ifthenelsenestedif,<>,{}),

({(s,<>,<>,0)
(1,<>,<condl>,

({(if..then,1),(begin..end,!),(.,!)},
{(condl,1)})),

(2,0,<cond2>,
({(if..then.l)},
{(cond2,1)})) ,

(3,<(stmtl,<>)>,
({(stmtl,1)},
{})).

(4,<(stmt2,<>)>,
({(stmt2,1),(else,1)},

(t,<^.o)),
{(s,l),(2,3),(2,4),(1.2).(l.t),(3.t).(4,t)},
s,
t))}

program casenestedif;
begin

if cond then
case what of

one : stmtl;
two : stmt2;
three : stmt3;

end

{((ifnestedif,<>,{}),
({(s,0,0,0)
(l.o,

<condl>,
({(if..then,1),(begin..end,1),(.,1)},
{(condl,1)})),

(2,<>,
<cond2>,
({(if..then,1)},
{(cond2,1)})),

(3,<(stmt,<>)>,
({(stmt,1)},(t.<J*U,o)}.

{(s, 1) , (2,3) , (1,2) , (1,t) , (3,t) , (2,t)},
t))}

end.

130

{ ((whilenestedif ,<> , {}■) ,
({(s,<>,<>,0)

(1,<>.

program
begin

if cond then
while cond2 do

stmt

program repeatnestedif;
begin

if condl then
repeat

stmt 1;
stmt2

until cond2
end.
{((repeatnestedif, o , O) ,
({(s,o.o.O)
(l,o,

<condl>,
({(if..then,1),(begin..end,1),(.,1)}.
{(condl,1)})),

(2,<(stmtl,<>),(stmt2,<>)>,
<cond2>,
({(stmtl,1),(;,1),(stmt2,1),(repeat, until,1)},
{(cond2,1)}))

(t.o.o.O)},
{ (s , 1) , (2,2) , (1,2) , (1, t) , (2, t)} ,
s.t))}

whilenestedif;

{((casenestedif,<>,{}),
({(s,o.o.O)
(l,o,

<cond>,
({(if . . then, 1) , (begin. .end, 1) , (. , 1)},
{(cond,1)})),

(2,o,
<what>,
({(case..of..end,l)},
{(what,!)>)),

(3,<(stmtl,<>)>,
({(stmtl,1)},
{(one:,I)})),

(4,<(stmt2,o)>,
({(stmt2,1),(;,1)},
{(two:,1)})),

(5,<(stmt3,<>)>,
({(stmt3,!),(;,2)},
{(three:,1)}))

(t,<>,<>,0)},
{(s,1),(2,3),(2,4),(2,5),(1,2),(1,t),(3,t),(4,t),(5,t)}, s,
t))}

131

<cond>,
({(if..then,1),(begin..end,1),(.,1)},
{(cond.l)})),

(2,<>,
<cond2>,
({(while..do,1)},
{(cond2,1)})),

(3,<(stmt,<>)>,
({(stmt,1)},

{(s,l) , (2,3), (3,2),(1,2),(l,t),(2,t)},
s,
t))}

program fornestedif;
begin

if cond then
for k := 1 to 10 do

stmt

program
begin

if condl then stmtl
else if cond2 then stmt2

end.
{((ifnestedifthenelse,<>,{}),

({(s,o.o.O)
(l.o.<condl>,

({(if . .then, 1) , (begin, .end, 1) , (. , 1)},
{(condl,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},

end.
{((fornestedif,<>,{}),
({(s,o.o.O)
(l.o,

<cond>,
({(if..then,1),(begin..end,1),(.,1)},
{(cond,1)})),

(2,<(k,<l>)>,
({(for..to..do,1)},
{(1,1),(k.l)})),

(3,0,
<k,10>,
«},
{(10,1)})).

(4,<(stmt,<>),(k,<k>)>,
({(stmt,1)},

(t,<>,<>,0)},
{(s,1),(2,3),(3,4),(4.3),(1,2),(1,t),(3.t)>.
s ,
t))}

ifnestedifthenelse;

1),(else,1)} ,

casenestedifthenelse;

132

program
begin

if cond then
case boston of

first : stmtl;
second : stmt2;
third : stmt3;

end
else

case imagine of
first : stmt4;
second : stmt5;
third : stmt6;

end

{})),
(3,<>,<cond2>,

({(if..then,1),(else,I)},
{(cond2,1)})),

(4,<(stmt2,<>)>,
({(stmt2,I)},

U*U.O)},
{(s,l),(3,4),(1,2),(2,t),(1,3),(4,t),(3,t)},
s,
t))}

program ifthenelsenestedifthenelse;
begin

if condl then stmtl
else if cond2 then stmt2
else stmt3

end.
{((ifthenelsenestedifthenelse,<>,{}),
({(s,o.o.O)
(l,o,

<condl>,
({(if..then,1),(begin..end,1),(.,1)},
{(condl,1)})) ,

(2,<(stmtl,<>)>,
({(stmtl, 1)},
{})),

(3,<>,<cond2>,
({(if..then,1),(else, 1)} ,
{(cond2,1)})),

(4,<(stmt2,<>)>,
({(stmt2,1)},
{})),

(5 , <(stmt3,<>)>,
({(stmt3,1),(else, 1)},

z <»)
(t,<>,<>.0)},

{(s, 1) , (3,4) , (3,5) , (1,2) , (2, t) , (1,3) , (4, t) , (5. t)} ,
s.
t))>

133

end.

{((casenestedif thenelse, o,{}),
({(s, 0,0,0)

(l.o,
<cond>,
({(if..then,1),(begin..end,1),(.,1)},
{(cond,1)})),

(2,0,
<boston>,
({(case..of..end,1)},
{(boston,1)})),

(3,<(stmtl,<>)>,
({(stmtl. 1)} .
{(first:,1)})),

(4,<(stmt2,<>)>,
({(stmt2,l),(;,1)},
{(second:,!)>)),

(5,<(stmt3,<>)>,
({(stmt3,l),(;,2)},
{(third:,1)})),

(7,<>,
<imagine>,
({},
{(imagine,!)})),

(8,<(stmt4,<>)>,
({(stmt4,1)},
{(first:, 1)})),

(9,<(stmt5,<>)>,
({(stmtS,!),(;,!)},
{(second:,1)})),

(10,<(stmt6,<>)>,
({(stmt6,1) . (;, 2)}.
{(third:,!)}))

(t,<>,<>,0)},
{(s,1).(2.3).(2,4),(2.5).(7,8).(7,9).(7.10).(1.2).(1.7),(8.t),
(9,t),(10,t),(3,t),(4,t),(S,t)},

s,
t))}

program repeatnestedifthenelse;
begin

if lookingclean then fly
else
repeat wash until toldtodoso

end.
{((repeatnestedifthenelse,<>,{}),

({(s,<>,<>,0)
<lookingclean>,
({(if■•then,1),(begin..end,1),(.,1)},
{(lookingclean,1)})),

(2,<(fly,o)>,

end.

131

program
begin

if you then
for count := 100 downto 1 do standup

else sitdown
end.
{((fornestedifthenelse.o ,{}) .
({(s.o.o.O)

<you>,
({(if..then.l),(begin..end,l),(• . 1)}»

program
begin

if condl then
while cond2 do

stmtl
else
while cond3 do

stmt2

({(fly.l)},
{})).(3,<(wash,<>)>,
<toldtodoso>,
({(wash,1),(repeat..until,1),(else.l)},
{(toldtodoso,1)}))

(t,<>,<>,0)},
{(s.l),(3,3),(1,2),(2,t),(1,3),(3,t)},
?))}

whilenestedifthenelse;

{((whilenestedifthenelse,<>,{}),
({(s.o.o.O)

<condl>,
({(if..then,1),(begin..end,1),(. ,1)},
{(condl, 1)})) ,

(2,0,
<cond2>,
({(while..do,1)},
{(condZ,1)})),

(3,<(stmtl,<>)>,
({(stmtl, 1)},
{})).

(S,<>,<cond3>,
({},
{(cond3,1)})),

(6,<(stmt2,<>)>,
({(stmt2, 1)},
{})) X.(t,<>,<>,0)},

{(s, 1) , (2,3), (3.2), (5,6), (6,5), (1,2), (1.5). (5, t), (2. t)},
t))}

fornestedifthenelse;

135

{(you,1)})),
(2,<(count,<100>)>,

({(for..downto..do,1)},
{(100,1),(count,1)»),

(3,<>,<count,1>,
({},
{(1,1)})),

(4,<(standup,<>),(count,<count>)>,
({(standup,1)},
{})),

(6,<(sitd own,<>)>,
(O,

{(s,1).(2,3),(3,4),(4,3),(1,2),(1,6),(6.t).(3,t)},
t))}

program ifnestedcase;
begin

case special of
1: if good then go;
7: stmt := 3;
2: if bad then stayhome;

end
end.
{((ifnestedcase,<>,{}),
({(s,o.o.O)
(l.o,<special>,

({(case..of..end,1),(begin..end,1),(.,1)}.
{(special,1)})) ,

(2.0,
<good>,
({(if. then,1)},
{(good,1),(1:, 1)})) ,

(3,<(go,<>)>,
({(go,1)},
{»).

(5,<(stmt,<3>)>,
(<(:=.!).(:.!)>.
{(3,1),(stmt,1),(7:.1)})),

(6,<>,<bad>,
({(if..then,1)},
{(bad,1),(2:,1)})),

(7,<(stayhome,<>)>,
({(stayhome,1),(;,2)},(U*U,O)>.

{(s, 1) , (2,3) , (1,2) , (1,5) , (5,t) , (3,t) , (2,t) , (6,7) , (1,6) , (7,t) ,
(6,t)},

136

s.t))}
program ifthenelsenestedcase;
begin

case nn.m of
3: if good then come else stop;
5: anystatement;
7: if good then stop else go;

end
end.
{((ifthenelsenestedcase,<>,{}),

({(s,<>,<>,0)
(l.o.<nnnn>,

({(case..of..end,1),(begin..end,1),(.,!)},
{(nnnn.l)})),

(2,0,
<good>,
({(if..then,1)}.
{(good,1),(3:,1)})),

(3, <(come,<>)>,
({(come.l)},
{})),

(4,<(stop,<>)>,
({(stop,l),(else,1)},
{})),

(6,<(anystatement,<>)>,
({(anystatement.1),(;,1)},
{(S:,l)})),

(7,0,
<good>,
({(if..then,1)}.
{(good,1),(7:,1)})),

(8,<(stop,<>)>,
({(stop,1)},
{})).

(9,<(go,<>)>,<>.({(go,1),(else.l),(;,2)},
(t,<^,0)>.

{(s , 1) , (2,3) , (2,4) , (1,2), (1,6), (6, t), (3, t) , (4 , t) , (7,8), (7,9) ,
(l,7),(8,t).(9,t)},

tj)}
program casenestedcase;
begin

case outer of
1: case innerl of

10: dead;
okay: alive;

noway: gotohell
end;

137

2: nothing;
3: case inner2 of

10: alive;
20: dead;

30: ill
end;

end
end.

{((casenestedcase,<>,{}).
({(s,0,0,0)
(l.o,

<outer>,
({(case..of..end,1),(begin..end,1),(.,1)},
{(outer,1)})),

(2,o,
<innerl>,
({(case..of..end, 1)},
{(inner1,1),(1:,1)})),

(3,<(dead,<>)>,
({(dead,1)},
{(10:,1)})),

(4,<(alive,<>)>,
({(alive,1),(;,!)},
{(okay:,!)})),

(5,<(gotohell,<>)>,
({(gotohell,1),(;,1)},
{(noway:,!)>)),

(7,<(nothing,<>)>,
({(nothing,1),(;,!)},
{(2:.1)})).

(8,o,
<inner2>,
({(case..of..end,!)},
{(inner2,1).(3:,1)})),

(9,<(alive,<>)>,
({(alive,!)},
{(10:,1)})).

(10,<(dead,<>)>,
({(dead,!),(;,1)},
{(20:,1)})).

(ll^<(ill,<>)>,
({(ill,!),(;,3)}.
{(30:.1)}))

(t, o,o,0)},
{(s.l),(2,3),(2,4),(2,5),(8.2).(8.7).(8,9).(8.10).(8.11).(1.8),
(7,t) , (3,t) , (4 . t) . (5,t) , (9,t) , (lO.t) , (U.t)}.

S ,t))}
program casenestedrepeat;
begin

case hey of

do,1)}

138

1: repeat hello until satisfy;
2: remaininlight;
3: repeat bow until saystop;

end
end.
{((casenest edr epeat ,o,{}),

({(s,<>,<>,0)
<hey>,
({(case..of..end,l),(begin..end,1),(., 1)},
{(hey.l)})),

(2,<(hello,<>)>,
<satisfy>,
({(hello,1),(repeat..until,1)},
{(satisfy,1), (1:,1)})),

(4,<(remaininlight,<>)>,
({(remaininlight,!),(;,1)},
{(2:,1)})),

(5,<(bow,o)>,
<saystop>,
({(bow,1),(repeat..until,1), (; ,2)},
{(saystop,1),(3:,1)}))

(t,o.o.o)},
{(s,1),(2,2),(1,2),(1,4),(4,t),(2.t).(5.5),(1,5),(5,t)},
tj)}

program casenestedwhile;
begin
case what of

0: while cond do stmtO;
1: stmtl;
2: while cond do stmt2;

end
end.
{((casenestedwhile,<>,{}),

({(s,<>,o,0)
(l.o,

<what>,
({(case..of..end,1),(begin..end,1).(.,1)},
{(what,1)})) ,

(2.0.
<cond>,
({(while..do,1)},
{(cond,1),(0:,1)})),

(3,<(stmtO,<>)>,
({(stmtO,1)},
{»).

(5,<(stmtl,<>)>,
({(stmtl,1),(;,1)},
{(1:. 1)») .

(6,<>,<cond>,
({(while..do,1)},
{(cond,1),(2:,1)})),

139

(7,<(stmt2,<>)>,
({(stmt2,1), (; ,2)},

, <>» „
(t,0,0,0)},

{(s.l),(2.3),(3,2),(1,2),(1,5),(S.t),(2,t),(6,7),(7,6),(1.6),
(6,t)},
s,t))}

program casenestedfor;
begin

case music of
1: for j := bach to mahler do playingrecord;
2: sleep;
3: for i := beatles to direstraits do goconcert;

end
end.
{((casenestedf or ,<> , {}) .

({(s,<>.<>,0)
(l.o.

<music>,
({(case..of..end,1),(begin..end,!),(.,1)},
{(music,!)>)),

(2,<(j,<bach>)>.
({(for..to..do,1)},
{(bach,1),(j,1),(1:,1)})).

(3,0,
<j,mahler>,
({}.
{(mahler, 1)})),

(4, <(playingrecord,<>),(j,<j>)>,
({(playingrecord,1)},
{})).

(6,<(sleep,<>)>,
({(sleep,1),(;,1)}.
{(2:.!)>)).

(7,<(i,<beatles>)>,
({(for..to .do,1)},
{(beatles,1),(i,1),(3:,1)})),

(8,<>,
<i,direstraits>,
({}.
{(direstraits,1)})),

(9,<(goconcert,<>), (i,<i>)>,
({(goconcert,1),(;,2)}.

(t.<^.0)>.
{(s.l),(2,3),(3.4) ,(4,3),(1.2),(1.6),(6,t),(3.t).(7.8),(8.9),
(9,8),(1.7),(8.t)>.
s,
t))}

program ifnestedrepeat;

140

program casenestedrepeat;
begin

repeat
case on of

1: go;

begin
repeat

if vacation then wolf := 100
until allyearlong

end.
{((ifnestedrepeat ,o,{}) ,

(<(s,<>,<>,0)
(l.o,

<vacation>,
({(if. .then.l) , (repeat. .until,1) , (begin, .end.l) , (. ,1)},
{(vacation,1)})),

(2,<(wolf,<100>)>,
({(:=.!)},
{(100,1),(wolf,1)})).(3,<>,<allyearlong>,
({}.
{(allyearlong,1)}))

(t,0,0,0)},
{(s,1),(1,2),(2,3),(1,3),(3,t),(3,1)},
s,
t))}

program ifthenelsenestedrepeat;
begin

repeat
if condl then stmtl
else stmt2

until cond2
end.
{((ifthenelsenestedrepeat,<>,{}),

({(s, o.o.O)
(l.o.<condl>,

({(if..then,1),(repeat..until, 1) ,(begin..end,1).(.,1)},
{(condl,1)})),

(2,<(stmtl,<>)>,
({(stmtl,1)},
{})).

(3,<(stmt2,<>)>,
({(stmt2,1),(else,1)},
{})),

(4.0,<cond2>,(O,
{(cond2,1)}))

(t,o,o,0)},
{(s,1),(1.2).(2,4).(1,3),(3.4).(4.t).(4,1)},
s,
t))}

141

2: come;
3: stay;

end
until stop

end.
{((casenestedrepeat,<>,{}),

«(s,<>,<>,0)
<on>,
({(case. .of. .end.l) , (repeat. .until,1) , (begin, .end.l) , (. ,1)},
{(on.l)})),

(2,<(go,<>)>,
({(go.l)},
{(1:.1)})),

(3,<(come,<>)>,
({(come,1),(;.1)},
{(2:,1)})),

(4,<(stay,<>)>,
({(stay,!),(;,2)}.
{(3:.1)})).

(5.0.
<stop>,
({},
{(stop,1)}))

(t,0,0,0)}.
{(s, 1),(1,2),(2,5),(1,3),(3,5).(1.4).(4.5),(5,t).(5.1)}.
tj)}

program repeatnestedrepeat ;
begin

repeat
repeat

stmt
until condl

until cond2
end.
{((repeatnestedrepeat,<>,{}),
({(s,o.o.O)
(1,<(stmt,<>)>,

<condl>,
({(stmt,1),(repeat..until,2),(begin..end,1),(., 1)},
{(condl,1)})),

(2,0.
<cond2>,
({>.
{(cond2,1)}))

(t,<>,<>,0)}.
{(s,1).(1,2),(1.1),(2.t).(2.1)}.
tj)}

program whilenestedrepeat;
begin

repeat
while condl do

142

stmt!until cond2
end.
{((whilenestedrepeat ,<>,O) .

«(s,<>,<>,0)
(1,0.<condl>,

({(while..do,1), (repeat..until,1),(begin..end,1),(.,1)},
{(condl,1)})) ,

(2,<(stmtl,<>)>,
({(stmtl, 1) },
{})),(3,0,
<cond2>,
({},
{(cond2,1)}))

(t,0,0,0)},
{(s,l),(1,2),(2,1),(1,3),(3,t),(3,1)},
s,
t))}

program fornestedrepeat;
begin

repeat
for i := 1 to 3 do

begin
stand;
sit

end
until stop

end.
{((fornestedrepeat,<>,{}),
({(s,o.o.O)

(l,<(i,<!>)>,
({(for..to..do,1),(repeat..until,1),(begin, end.1),(.,1)},
{(1,1),(i.l)})),

(2,<>,<i,3>,
({}.
<(3.1)})),

(3,<(stand,<>),(sit, <>),(i, <i>)>,
(<(stand,1),(;,1),(sit,1),(begin..end, 1)},
<})),

(5,0,
<stop>,
(<}.
<(stop,1)}))

(t,0,0,0)},
{(s , 1) , (1,2) , (2,3) , (3,2) , (2,5) , (5, t) , (5,1)},
tj)}

program ifnestedwhile;
begin

while condl do
if cond2 then stmt

1)}.

143

stmtl;
stmt2;
stmt6

program
begin

while cond do
case cond of

12
6

end
end.
{((casenestedwhile,<>,{}■) ,

«(s,<>,<>,0)

program
begin

while cond do
if cond2 then stmtl else stmt2

end.
{ ((ifthenelsenestedwhile , o, {}) ,
({(s,o.o.O)

<cond>,
({(while. .do , 1) , (begin. . end, 1) , (. , 1)},
{(cond,1)})),

(2.0,<cond2>,
({(if. then,1)},
{(cond2,1)})),

(3,<(stmtl,<>)>,
({(stmtl,1)},
{})),

(4 , <(stmt2,<>)>,
({(stmt2,1),(else,1)},

(t,<^.0)>.
<(s,1),(2.3).(2.4),(l,2),(l.t).(3.1).(4.1)}.
s,
t))}

casenestedwhile;

end.
{((ifnested-while ,<>,{}),

({(s,0,0,0)
<condl>,
({(while..do,1),(begin..end,1),(.,1)},
{(condl,1)})),

(2,0.
<cond2>,
({(if. then.l)},
{(cond2,1)})) ,

(3,<(stmt,o)>,
({(stmt,1)},

(t, <>,o,0)},
{(s , 1) , (2,3) , (1,2) , (1, t) , (3,1) , (2,1)},
tj)}

ifthenelsenestedwhile;

144

<cond>,
({(while..do,1),(begin..end,1) , (.,1)},
{(cond,1)})),

(2,<>,
<cond>,
({(case..of..end,1)},
{(cond.l)})),

(3,<(stmtl,<>)>,
({(stmtl,1)},
{(1:,1)})),

(4,< (stmt2,<>)>,
({(Stmt2,l),(;,!)},
{(2:,1)})),

(5,<(stmt6,<>)>,
({(stmt6,1),(;,1)},
<(6: . 1)»)

(t,0,0,0)},
{(s,1).(2,3),(2,4),(2,5),(1,2),(1,t).(3.1).(4.1).(5.1)}.
S,
t))}

program repeatnestedwhile;
begin

while condl do
repeat

stmt;until cond2
end.
{((repeatnestedwhile,<>,{}),

({(s,0,0,0)
(l.o,<condl>,

({(while..do,1),(begin..end,1),(.,1)},
{(condl,1)})) ,

(2,<(stmt,<>)>,
<cond2>,
({(stmt,1),(;,1),(repeat..until, 1)},
{(cond2,1)}))

(t,<>,<>,0)},
{(s, 1) , (2,2), (1,2) , (1, t) , (2,1)},
s,
t))}

program whi1enestedwhile;
begin

while condl do
while cond2 do

stmt
end.
{((whilenestedwhile,<>,{}),
({(s,o.o.O)
(1,0,<condl>,

({(while..do,1),(begin..end,1),(.,1)},
{(condl,1)})) ,

145

(2,<>,
<cond2>,
({(while,.do,1)},
{(cond2,1)})),

(3,<(stmt,<>)>,
({(stmt, 1)},

(t,<>,<>,0)},
{(s,1),(2,3),(3,2),(1,2),(1,t),(2,1)},
tj)}

program fornestedwhile;
begin

while cond do
for i := init downto final do

stmt
end.
{((fornestedwhile,<>,{}),

«(s.<>,<>,0)
<cond>,
({(while..do,1),(begin..end,1),(. , 1) },
{(cond,1)})),

(2,<(i,<init>)>,
({(for..downto..do,1)},
{(init,l),(i,l)})),

(3,<>,<i,final>,
({},
{(final,1)})),

(4,<(stmt,<>),(i,<i>)>,
({(stmt, 1) } ,

(t.^U.O)},
{(s,1),(2,3), (3,4),(4,3),(1,2),(1,t),(3,1)},
s,
t))}

program ifnestedfor;
begin

for i := 1 to 999 do
if cond then stmt

end.
{((ifnestedfor,<>,{}),

({(s,<>,<>,0)
(1,<(i,<l>)>,

({(for..to..do.l),(begin, .end.l),(.,!)},
{(1.1),(i.l)})),

(2,0,
<i,999>,(O.
{(999,1)})),

(3,0,
<cond>,

146

1' end
end.

({(if..then,1)},
{(cond,1)})),

(4,<(stmt,<>)>,
({(stmt, 1)},
{})).

(5,<(i,<i>)>,
(O,

{(s,1),(3,4),(4,5),(3,5),(1,2),(2,3),(5,2),(2,t)},
s,
t))}

program ifthenelsenestedfor;
begin

for i := 1 to 100 do
if cond then stmtl else stmt2

end.
{((ifthenelsenestedfor,<>,O),

({(s,<>,<>,0)
(l,<(i,<!>)>,

({(for..to..do,1),(begin..end.l) ,(.,!))•,
{(1,1),(i.l)})).

(2,o,
<i,100>,
({>,
{(100,1)})),

(3,<>,<cond>,
({(if..then,1)},
{(cond,1)})),

(4,<(stmtl,<>)>,
({(stmtl,1)},
{})),

(5,<(stmt2,<>)>,
({(stmt2,1),(else,1)},
{})).

(6,<(1,<i>)>.
({}.
{}))(t,o,o,0)},

{(s,1).(3,4),(4.6),(3,5),(5,6),(1.2),(2,3),(6.2),(2.t)}.
tj)}

program casenestedfor;
begin

for j := i to k do
case what of

stmtl;
stmt2;
stmt3

147

{((casenestedfor,<>,{}),
({(s.0,0,0)
(1,<{j,<i>)>,

({(for..to..do,1),(begin..end,1),(.,!)},
{(1.1),(j.1)})),(2,o,

<j,k>,
({},{(k.l)})).

(3,o,<v.’hat>,
({(case..of..end.l)},
{(what,!)>)),

(4,<(stmtl,<>)>,
({(strati,!)},
{(cl:,!)})),

(S,<(strat2,<>)>,
({(stmt2,1),(;,!)},
{(c2:,!)})),

(6,<(stmt3,<>)>,
({(stmt3,!),(;,!)},
{(c3:,!)})),

(7,<(j,<j>)>,
({},
{})) „(t,o,o,0)},

{(s.l),(3,4).(4.7).(3.5).(5.7),(3.6),(6.7).(1.2).(2,3).(7.2).
(2,t)},

s ,
t))}

program repeatnestedfor;
begin

for i 1 to 2 do
repeat
stmt;

until cond
end.
{((repeatnestedfor,<>,{}),

({(s,<>,<>,0)
(l,<(i.<!>)>,

({(for..to..do,l),(begin.,end,l)»(.,!)},
{(1.1),(i.l)})).

(2.<>,
<i,2>,
({}.{(2,1)})).

(3,<(stmt,<>)>,
<cond>,
({(stmt, 1) , (; ,1) , (repeat, .until, 1)},
{(cond.l)})),

(5,<(i,<i>)>,

fornestedfor;

148

({},
{})) „

(t,0,0,0)},
{(s,1),(3,5),(3,3),(1,2),(2,3),(5,2),(2,t)},
S >
t))}

program whileneatedf or;
begin

for i := 1 to 100 do
while cond do stmt

end.
{((whileneatedfor,<>, {}) ,

({(s,0,0,0)
(l,<(i,<!>)>,

({(for..to..do,1),(begin..end,1),(.,1)},
{(1,1),(i.l)})),

(2,0,
<i,100>,
«},
{(100,1)})),

(3,<>,<cond>,
({(while..do,1)},
{(cond.l)})),

(4,<(stmt,<>)>,
({(stmt,1)},
{})),

(5,<(i,<i>)>,
({}.

{(s. 1), (3,4), (4.3), (3.5), (1.2). (2.3). (5.2). (2. t)}.
s.
t))}

program
begin

for i := init to final do
for j := init to final do

stmt := right[l,j]
end.
{ ((f ornestedfor ,<>,{}),
({(s.o.o.O)

(l,<(i,<init>)>,
(•((for. .to. . do, 1) , (begin. . end.l) ,(.,!)},
{(init,1).(i.l)})),

(2.0,
<i,final>,
({}.
{(final, 1)})) ,

(3,<(j,<init>)>,
({(for..to..do,l)},

1-19

{(init.l),(j,1)})),
(4,0,<j,final>,

({},
{(final,1)})),

(5,<(stmt,<right,l,j>),(j,<j>)>,
«(,,D,([],!).(: = .!)}.
{(1.1).(j.1),(right,1),(stmt,1)})),

(6,<(i,<i>)>,
(O.

<(s,1),(3,4),(4,5),(5,4),(4,6),(1.2),(2,3),(6,2),(2.t)},
t))}

B.4 Goto Statement
program gotoifthenelse;
label 1,2,3;
begin

if cond then goto 1 else goto 2;
1: stmtl;

goto 3;
2: stmt2;
3:

end.
{((gotoifthenelse,<>,{}),

({(s,<>,<>,0)
(1,<(stmtl,<>)>,

<cond>,
({(goto,3),(if..then,1),(;,3),(stmtl,1),(begin. end,1).(.,1)},
{(cond,1),(1,1),(2,1),(1:,1),(3.1)})),

(5,<(stmt2,<>)>,
({(stmt2,1),(;.1)},
{(2:,1),(3:,1)}))

(t,o.o.O)},
{(s,1),(1,5),(1,t),(5,t)},
t))J

program gotoifthen;
label 1;
begin

if cond then goto 1;
stmtl;
1: stmt2;

end.
{((gotoifthen,<>,{}),
({(s.o.o.O)
(1,0,

<cond>,
({(goto , 1) , (if . . then, 1) , (begin. . end, 1) , (. »1)},
{(cond,1),(1,1)})),

150

(3,<(stmtl,<>)>,

({(;.2)}.
{})),

(6,< (stmt2,<>)>,

({(stmt2,1),(;,!)},
{(!:,!)}))

(t, o.o.O)},
{(s,1),(1,3),(1,6),(3,6),(6,t)},
S .
t))}

program gotofor;
label 1,2,3;begin
for i := 1 to 10 doif cond then goto 1;
stmtl;1: stmt2;end.

{((gotofor,<>,{}),
({(s,0,0,0)

(1. <(i,<!>)>.
({(for..to..do,1),(begin..end,1),(.,1)},
{(1,1),(i.l)})),

(2,0,<i,10>,(O.{(10,1)})),
(3,o,<cond>,

({(goto,1),(if..then,1)},
{(cond,1),(1,1)})),

(4,<(i,<i>)>,<>.
({}.
{})),(6,<(stmtl,<>)>,
({(;,2)}.
{})).(9,<(stmt2,<>)>,<>,
({(stmt2,1),(;,1)}.
{(1.1)}))(t,<>,<>,0)},

{(s.1),(3,4),(1,2),(2,3),(4,2),(2,6),(3,9).(6.9).(9.t)},
tj)}

program gotofor2;
label 1,2,3;begin
for i := 1 to 10 do if cond thenbeginstmt;goto 1;

151

end;
stmtl;
1: stmt2;end.

{((gotofor2,<>,{}),
({(s,0,0,0)

(l,<(i,<!>)>,
({(for..to..do,1),(begin..end,1),(.,1)?,
{(1,1),(1,1)})),

(2,<>,
<i,10>,
({}.
{(10,1)})),

(3.0,
<cond>,
({(if..then,I)},
{(cond.l)})),

(4,<(stmt,<>)>,
({(stmt,1),(goto,1),(;,2),(begin..end,1)},
{(1.1)})),

(6,<(i,<i>)>,
({},
{})).

(8,<(stmtl,<>)>,
({(;,2)}.
{})).

(11,<(stmt2,<>)>,
({(stmt2.1),(;,1)},
{(1:,1)}))

(t,0,0,0)}.
{(s, 1), (3.4), (3,6). (1,2), (2.3), (6.2). (2.8). (4.11). (8.11). (11, t)}»
3,t))}

program gotoforif;
label 1,2.3;
begin

for i := 1 to 10 do
if cond then
begin

stmt;
goto 1;

end;
1: if cond2 then stmt2;

end.
{((gotoforif,<>,{}),
({(s.o.o.O)
(1,<(i,<l>)>,

({(for..to..do,1),(begin..end.l), (.,1)},
{(1.1).(i,l)»),

(2.0,
<i,10>,
({},

152

{(10,1)})).
(3,<>,

<cond>,
({(if..then,1)},
{(cond.l)})),

(4,<(stmt,<>)>,
({(stmt,1),(goto,1),(;,2),(begin..end, 1)},
{(1,1)})),

(6,<(i,<i>)>,
({}.
{})),

(8,0.<cond2>,
({(; .1)},
{(1:.1),(cond2,l)})).

(10,<(stmt2,<>)>,
({(stmt2,l),(;,1)},

(t,<>,o,0)}.
{(s,1),(3,4),(3,6),(1,2),(2,3).(6,2),(2.8),(8.10),(10,t),(8,t).
(4,8)},

t))}
program gotol;
label 1;
begin

for i := 1 to m do
if x = list[i] then
goto 1;

list[i] := x;
countti] 0;
m := i;
l:count[i] := count[i] + 1

end.
{((gotol,<>,{}),

({(s,<>,o.O)
(l.<(i,<!>)>,

({(for..to.do,1),(begin. end,1),(.,1)}.
{(1,1).(i.l)))).

(2,o,
<i,m>,
({}.
{(m.l)})),

(3,<>,
<x,list,i>,
({([] .1).(=,1).(goto.l),(if..then,1)},
{(x.1),(i.1),(list.1),(1.1)})).

(4,<(i,<i>)>,
({}.
{})).

(8,<(list,<list,i,x>),(count,<count,i,0>),(m,<i>)>,
({(;,4)},

153

{(i,3),(m,1),(0,1),(count,1),(x,1),(list,1)})),
(9,<(count,<count,i,count,i,1>)>,

({([],2),(+.1),(: = ,!)},
{(1:,1),(i,2),(count,2),(1,1)}))

(t,<>,<>,0)},
{(s,1),(3,4),(1,2),(2,3),(4,2),(2,8),(3,9),(8.9),(9.t)},
t))}

program goto2;
label 30, 50, 60, 70;
begin
label 30, 50, 60, 70;

if x < y then goto 30;
if y < z then goto 50;
small := z;
goto 70;

30: if x < z then goto 60;
small := z;
goto 70;

50: small := y;
goto 70;

60: small := x;
70:

end.
{((goto2,o,{}),
({(s.o.o.O)

(1,<>,<x,y>,
({(<,1), (goto,1),(if..then,1),(begin..end,1),(..1)},
{(x,1),(y,1),(30,1)})),

(3,o,<y,z>,
«(;,!)}.
{(y.i).(z,i),(50,i)})).

(5,<(small,<z>)>,
({(;,3),(goto,1)},
{(z,1).(small,1),(70,1)})),

(6,<>,
<x, z>,
(<(<,!).(goto,1),(if..then,1)}.
{(30;,1),(x,1),(z.1),(60,1)})).

(9,<(small,<z>)>,
({(;,3),(goto,1)},
{(z,1).(small,1).(70,1)})),

(10,<(small,<y>)>,
({(:=.!).(goto,!),(;,2)}.
{(50:,1).(y,1),(small,1),(70,1)})),

(12,<(small,<x>)>,
({(:=,!),(;,1)},
{(60:,1),(x,1),(small,1),(70:,1)}))

(t.o.O.O)},
{(s,1),(1.3),(3,5),(6,9),(1.6),(3,10),(6,12),(10,t),(9,t),(5,t).
(12,t)},

begin

19:

154

blnk;
blnk;

10:
end.
{((goto3,<>,{}),

({(s,0,0,0)
(l,<(i,<!>)>,

({(for..to..do,1),(begin..end,1),(.,!)},
{(1.1).(i.l)})),

(2,0,
<i,m>,
({}.
{(m.l)})),

(3,o,<bp,i,l,0>,
({([], 1).(+.1).(().1).(>,1).(goto.1),(if..then.1),(begin, end.1)}.
{(i,1).(bp,1),(1.1),(0.1).(10,1)})),

(5,0,
<bp,i,1,0>,
({(;,!)},
{(i , 1),(bp,1).(1,1),(0.1),(19.1)})),

(8,<(ibnl,<ibnl,i,blnk>),(ibn2.<ibn2,i,blnk>)>.
({(;,4),(goto,!)},
{(i.2),(blnk,2),(ibn2,1),(ibnl,1).(10.1)})),

(12,<(bp,<bp,i,1>),(ibnl,<ibnl,i,blnk>),(ibn2.<ibn2,i,blnk>)>,
({([].!),(-.!).(:=.!).(;.3)}.
{(i,3),(blnk,2),(ibn2,l).(ibnl.l),(19:,l).(l,l).(bp.l)»),

(13,<(i,<i>)>,<>.(O.
{(10:.1)}))

(t,o.o.O)},
{(s.l),(3,5),(5,8),(5.12),(8,13).(3.13),(12.13).(1.2),(2.3),(13.2),
(2,t)},

tj)}
program goto4;
label 10;

8 ,
t))}

program goto3;
label 19, 10;
begin

for i := 1 to m do
begin

if (bp[i] + 1) > 0 then
goto 10;

if (bp[i] + 1) < 0 then
goto 19;

ibnl [i] :
ibn2[i] :
goto 10;
bp[i] := -1;
ibnl[i] := blnk;
ibn2[i] := blnk;

end

10:

/ > Vi iJ,
.1),(10:.1)})).

155

<newin,0>,
«(;,!)}.
{(newin,1),(0,1),(10,1)})),

f,(uui/pub*,-large>),(output,<output,output **>),(output »<output,end-of-line>) >,

end.
{((goto4,<>,{}),

({(s,<>,<>,0)
(1,<(large,<0>)>,

({(:=,1),(;,1), (begin..end.l), (.,1)},
{(0.1),(large.1)})).

(4,<(newin,<inpuf*>) , (input**, <input>)>,
<newin,large>,
({(readin,1) , (0,1),(;,1)},
{(newin,2),(large,1),(10:,1)})),

(5,<(large,<newin>)>,<>,({(:=.!)},
{(newin.l),(large,1)})),

(7,o,
<newin,O>,
({(;,!)}.
{(ucwxn,1/ ,v

(10, < (output-* ,<1
(<(:,2)}.
{(large,1)}))

(t.o.o.O)}.
{(s, 1),(1,4),(4.5),(5,7),(4,7),(7.4).(7.10).(10.t)l.
s,
t))}

program gotob;
label 10;
begin

found := false;
for i := 1 to maxsize do

if jobid = jobs(i] then
begin

found := true;
goto 10

end;
10: if found then

errorlog[3] ’
else errorlog[3] :=

end.
{((goto5,o,{J) ,
({(s.o.o.O)
(l,<(found,<false>).(i,<!>)>,

({(:-»1).(;.1) . (for..to..do,1),(begin..end,1),(.,1)},
{(false,1),(found,1),(l,l),(i,l)})),

var newin,large : integer;
begin

large := 0;
readln(newin);
if newin > large then
large := newin;
if newin >= 0 then

goto 10;
writeln(large);

10:

156

(3,<>,
<i,maxsize>,
({}.
{(maxsize,1)})),

(4.0,
cjobid,jobs,i>,
«([]. !),(=.1), (if., then, 1)},
{(jobid,1),(i,1),(jobs,!)})),

(5,<(found,<true>)>,
o,
({(:=,!),(goto.l),(;,!),(begin..end.l)},
{(true,1),(found,1),(10,1)})),

(6.<(i,<i>)>,
(O.
{})).

(8,<>,<found>,
({(;,!)},
{(10:,1),(found,1)})) ,

(10,<(errorlog,<errorlog,3,’ ’>)>,
({([].!).(: = .!)},
{(3,1),(’ ',1),(errorlog,1)})),

(11,<(errorlog,<errorlog,3,’»’>)>,
({([],!),(:=,1),(else,1),(;,!)},
{(3,1),(’*’,!),(errorlog,1)}))

(t,o,«,0)},
{(s,1),(4,5),(4,6),(1,3),(3,4),(6,3),(3.8).(8,10).(10,t),(8.11),
(11,t),(5,8)},
s,
t))}

program goto6;
label 10;
begin

for i := 1 to n do
begin
get(r);
for j := 1 to i-1 do

if a[j] - r then
goto 10;

a[i] := r
end

end.
{((goto6,<>,{}),

({(s. o,o,0)
(1 ,<(i,<!>)>,

({(for..to..do,1),(begin..end.l).(.,1)},
{(1.1),(i.l)})).

(2.0,
<i,n>,
({}.
{(n.l)})),

(3,<(r",<r>),(j,<!>)>,
({(get,1),((),1),(;,1),(for..to..do,1),(begin..end.l)},

157

{(10:,1),(r,1),(1,1),(j,1)})),
(6,<>,<j,i,l>,

«(-,!)}.{(i.D.U.l)})),(7,0,
<a,j,r>.
«([] .1) . (=,D , (goto, 1) , (if. . then.l)},
{(j , 1) , (a, 1) , (r, 1) , (10,1)})) ,

(8,<(j,<j>)>,
({}.
{})).(10,<(a,<a,i,r>),(i,<i>)>,
({(;,!)}.{(i,l),(r,l),(a,l)}))

(t,o,o,0)},{(s,1),(7,3),(7,8),(3,6),(6,7),(8,6).(6,10).(1,2),(2.3).(10,2).
(2,t)},

S ,
t))}

program goto7;
label 10;begin

for i := 1 to m do
if x = a[i] then

goto 10;
i := m + 1;
m := i;
a[i] : = x;
b[i] := 0;

10: b[i] := b[i] + 1
end.

{((goto7,<>,{}),
({(s,<>,<>,0)

(l,<(i,<!>)>,

({(for..to. do,1),(begin end,1).(.1)},
{(1,1),(i.l)})),

(2,0,
<i,m>,
(O.
{(m.l)})).

(3,0,

({([),1),(“,1).(goto,1),(if then,1)},
{(x,1),(i,1),(a,1),(10,1)})),

(4,<(i,<i>)>,

({}.
{})),

(9,<(i,<m,1>),(m,<i>),(a,<a,i ,x>),
(b,<b,i,O>)>,

({(;.5)},
{(i,4).(0.1).(b.l),(x,l),(a,l),(m,2).(1.1)})),

(10,<(b,<b,i,b,i,l>)>,

158

«([],2),(+,1),(: = ,!)},
{(10:,1),(i,2),(b,2),(1,1)}))

(t,<>,<>,0)},
{(s,1),(3,4),(1,2),(2,3),(4,2),(2,9),(3,10),(9,10),(10,t)},
3.t))}

program goto8;
label 10;begin

i := h(x);while a[i] <> x dobegin
if a[i] = 0 thenbegin

a[i] := x;
b[i] := 0;goto 10

end;i := i + 1;if i = 0 then i := mend;
10:b[i] := b[i] + 1 end.
{((goto8,<>,{}),
({(s,o.o.O)(1 ,<(i, <(h,«x»)>)>,

({(h,!),((),!),(:=,!),(;,!),(begin..end,1),(..1)}.
<(x,l),(i,l)})),(2,<>,<a,i,x>,({([].l).(o,l), (vhile. .do, 1)},
{(i,1),(a,1),(x, 1)})),

(3,<>,<a,i,0>,
({([],!),(=,!),(if..then,1),(begin..end.1)},
{(i,1),(a,1),(0,1)})),

(4,<(a,<a,i,x>),(b,<b,i,0>)>,
({([],2),(:=,2).(;,2),(goto,1),(begin, end,1)}.
{(i,2),(x,1),(a,1),(0,1),(b,1),(10,1)})),

(8,<(i,<i,1>)>,<i,0>,
({(;.2)},
<(1.3).(0,1).(1.1)})).(9,<(i,<m>)>,
({(:=,!)}.{(m.l).(i.l)})).

(12,<(b,<b,i,b,i,l>)>,
({(;,!)},{(10:,l),(i,2),(b,2).(l,l)}))

(t,o.o.O)},
{(s.l),(3,4),(3,8).(8,9).(2,3).(2,12),(9,2).(8,2),(1.2),(4.12), (12,t)}.
S.

159

t))}
program goto9;
label 10;
begin

read(x);
if x = slash then
begin
read(x);
if x = slash then
begin

writein;
goto 10

end
else

tabulate
end;

write(x);
if x = period then
write(blank);

10:
end.
{((goto9,<>,{}),

({(s,<>,<>,0)
(1,<(x,<input”>),(input”,<input>)>,

<x,slash>,
({(read,1) , (() , 1) , (;,1), (=,1),(if..then,1),(begin, end,1), (.,1)1
{(x,2),(slash,1)})),

(3,<(x,<input”>),(input”,<input>)>,
<x,slash>,
({(read, 1) , (() , 1) , (;,1),(=.1),(if..then,1),(begin, end,1)},
{(x,2),(slash,1)})),

(5,<(output,<output,end-of-line>)>,
({(writein,1),(goto.l),(;,1),(begin, .end.l)},
{(10.1)})),

(6,<(tabulate,<>)>,
({(tabulate,1) , (else,1)},
{})).

(10,<(output*,<x>),(output,<output,output*>)>,
<x,period>,
({(;,2)},
{(x,2),(period,1)})).

(11,<(output”,<blank>),(output,<output,output“>)>,
({(write,1),((),!),(;,1)1.
{(blank,1).(10:.1)}))

(t,<>,<>,0)},
{(s.l),(3,5),(3,6).(1,3),(1,10),(6,10).(10,11),(11,t),(10.1).(5.t)>.
tj)}

program gotolO;
label 20;
begin

read(igirl) ;
for i := 1 to 8 do

re ad(fem[i]);

160

or
then

20:read(iboy);
for i := 1 to 8 do

read(male[i]);
for i := 1 to 8 do

if (fem[i] and not male [ill
(male[i] and not fem[ij)

goto 20;
writein(iboy:5);
goto 20;

end.

{((gotolO,<>,{}) ,
({(s,0,0,0)

(1,<(igirl,<input*>),(input*,<input>),(i,<!>)>,

({(read,1),((),1),(;,1),(for..to..do,1),(begin..end,1),(.,1)}.
{(igirl,1),(1.1),(i.l)})),

(3,<>,
<i,8>,
({},
{(8,1)})),

(4,<(fem,<input*,i>),(input*,<input>),(i,<i>)>,
({([], 1) , (read, 1) ,((), 1)},
{(i,l),(fem,l)})),

(8,<(iboy,<input*>),(input*,<input>),(i,<!>)>,<>.({(;.2)}.{(l,l),(i,l),(20:,l),(iboy,l)})),
<i,8>,
({}.{(8,1)})),

(10,<(male,<input“,i>),(input*,<input>),(i,<i>)>,
({([],!),(read,1),(0,1)},
{(i.l),(male.1)})),

(12,<(i,<!>)>,<>,({(;,!)}.{(1.1),(i.l)})),
(13,0,<i,8>,

({},{(8,1)})),
(14,<>,<fem,i.male,i.male,i,fem,i>,

({([],4),(not,2),(and,2),((),2),(or.1).(goto.1),(if..then,1)},
{(i,4),(fem,2),(male.2).(20,1)})),

(15,<(i,<i>)>.
«>.{})),(17,<(output*,<iboy,5>),(output,<output,output“>),(output,<output,end-of-line>)>,
({(;.3),(goto,l)}.
{(iboy,1),(5,1),(20,1)}))

(t,0,0,0)},
{(s,l),(1,3),(3.4),(4,3),(3,8).(8,9),(9.10),(10.9).(9,12),(14,8),
(14,15),(12,13),(13,14),(15,13),(13,17),(17,8)},

161

and
then

s >t))}
program goto11;
label 10;
begin

sparse := 0;
if

for k := 1 to n do
if (nrowFk] = i) (ncol[kj = j)

begin
sparse := value[kJ;
goto 10

end;
10:
end.
{((gotoll,<>,{}),

({(s,<>,<>,0)
(l,<(sparse,<0>),(k,<!>)>,

({(:=,1),(;,1),(for..to..do,1),(begin..end,l),(.,1)},
{(0,1),(sparse,1),(1,1),(k,1)})).

(3.0,
<k,n>,
{(n.l)»),

(4.0,
<nrow,k,i,ncol,k,j >,
({([],2),(=,2),((),2),(and,1),(if..then,1)},
{(k,2),(nrow.l), (i.l),(ncol.l).(j, 1)})),

(5,<(sparse,<value,k>)>,
({([].1),(:=,1),(goto,1),(;,1),(begin..end,1)>,
{(k,1),(value,1),(sparse,15,(10.1)})),

(6,<(k,<k>)>,
({(;.!)),
{(10:.1)}))

(t,<>,<>,0)}.
{(s, 1),(4,5),(4,6),(1,3),(3.4).(6.3),(3,t).(S.t)).
t))}

program goto!2;
label 1;
begin
1:if data [index] < newdata then

if left[index] = 0 then
left [index] := newindex

else
begin

index := left[index];
goto 1

end
else

if right[index] - 0 then
right[index] := newindex

else
begin

162

index := right[index];
goto 1

end;
data[index] := newdata end.

{((gotol2,<>,{}),
({(s,0,0,0)

<data,index,newdata>,
({([],!),(<,!),(if..then,1),(begin..end,1),(.,!)},{ (1:,1) ,(index,1),(data,1),(newdata,1)})),

(3,0,<left,index,0>,
({([], 1) ,(=, 1) , (if. .then, I)},{(index,1),(left.l),(0,1)})),

(4,<(left,<left,index,newindex>)>,
({([].!),(:=,!)},{(index,1),(newindex,1), (left.l)})),

(5,<(index,<lef t,index>)>,
({([],1),(:“,1),(goto,1),(;,!),(begin..end,1),(else,1)},
{(index,2),(left.l),(1,1)})),(7.0,<right,index,0>,
({},{(index,1),(right,1),(0,1)})),

(8,<(right,<right,index,newindex>)>,
({([].!).(:=.!)}.{(index,1),(newindex,1),(right,1)})),

(9,<(index,<right,index>)>,
({([],!).(:=,1).(goto,1),(;,1),(begin, end,1),(else.l)}.
{(index,2),(right,1),(1,1)})).

(12,<(data,<data,index,newdata>)>,
({(;.!)}.
{(index,1),(newdata,1),(data,1)}))

(t,<>,<>,0)},
{(s,l),(3,4),(3,5),(7.8),(7.9).(1.3).(1,7),(8,12).<4.12).(9.1),
(5,1),(12,t)},

s,
t))}

B.5 Expressions
program empty;
begin
end.
{((empty,<>,{}),

({(s.<>,<>,0) (!.<>.
({(begin..end.l),(.,1)},
{}))

163

(t,<>,<>,0)},
{(s.t)}.
tj)}

program idwitharraydesignator;
begin

a[i] := b[j] + 1;
end.

{((idwitharraydesignator,<>,{}),
({(s, o.o.O)
(1,<(a,<a,i,b,j,1>)>,

({([].2),(+,!),(:=,!),(;,!),(begin, end,1),(.,!)},
{(i.l).(j.l),(b,l),(l,l),(a,l)}))

(t,o.o.O)},
{(s,l),(l,t)},
tj)}

program expression;
begin

a := (42 - 13) * 2 / (23 +3);
b(this,32 mod 2);
real := (integer or real) and not boolean

end.
{((expression,<>,{}),

({(s,<>,<>,0)
(1, < (a , <42,13,2,23,3>) , (b, <<this>, <32,2») , (real, <integer,real ,boolean>)>.

({(-, 1), (0.4), (*,!).(+.!),(/.!).(:-.2), (;.2). (mod. 1).
(, , 1) , (b, 1) ,(or,1),(not,1),(and,1),(begin, end,!),(.»!)>.

{(42.1),(13,1),(2,2).(23,1),(3.1).(a.1).(this.1).(32.1).
(integer,1),(real,2),(boolean,1)}))

(t.<>.<>,0)},
{(s.l).(l.t)}.
S,
t))>

program expression2;
begin

a := f(a,wt(c+b))
end.
{((expression2,<>,{}),

({(s.<>,<>.0)
(1 ,< (a, <(f,«a>,< (wt,«c,b») »)>)>,

({(*.1),(wt,l),((),2).(,,l),(f,!),(:=,1),(begin, end.1),(.,1)},
{(a, 2) , (c , 1) , (b, 1)}))

(t,<>,<>,0)},
{(s,l),(l,t)},
tj)}

program literals;
begin

a := "I am an angels’’ boy.’

B.6

resettest;

164

program puttest;
begin

put(grocerystore)
end.
{((puttest,<>,{}),
({(s.o.o.O)
(1,<(grocerystore,<grocerystore,grocerystore">)>,

({(put,l),((),1),(begin..end.l),(.,!)},
{(grocerystore,1)}))

(t,<>,<>,0)},

program
begin

reset(f)
end.
{((resettest,<>,{}),
({(s,o.o.O)
(l,<(f“,<!>)>,

({(reset,1),((),1),(begin, end,1),(.,1)},
{(f.l)}))

(t,0,0,0)},
{(s.D.d.t)},
8 .
t))}

Predefined Procedures and Functions
program rewritetest;
begin
rewrite(f);

end.
{((rewritetest,<>,{}),
({(s.o.o.O)(l.<(f,o)>.

({(rewrite,1),((),!),(;,1),(begin..end.l), (.,1)}.
{(f.l)}))

(t,o,<>,0)},
{(s,l),(l,t)},
tj)>

end.
{((literals,<>,{}),
({(s.o.o.O)

(l,<(a, <’I am an angels’’ boy.’>)>,
({(:=,!),(begin, end.l),(.,1)},
{(’I am an angels’’ boy.’,1),(a,1)}))

(t,<>,<>,0)J,
{(s,l),(l,t)},
tj)}

4

165

{(s,1),(1,t)},
S ,
t))}

program gettest;
begin

get(f)
end.
{((gettest,o,{}),

({(s,<>,<>,0)
(l,<(f,<f>)>,

({(get,1),((),1),(begin..end,1),(.,!)},
{(f.l)}))

(t,0,0,0)}.
{(s,l),(l.t)}.
s,
t))}

program readlnwritelntest(input.output);
var x, y : integer;
begin

readln(x);
writein(yj;

end.
{((readlnwritelntest,<input,output>.{}),

({(s. 0,0,0)
(1,<(x,<input*>),(input*,<input>),(output*,<y>).

(output,<output,output*>),(output,<output,end-of-line>)>.
({(readln,1),(0,2),(;,2),(writein,1).(begin, end,1).(..1)},
{(x.l).(y.l)}))

(t.o,o,0)},
{(s,l),(l.t)},
tj)}

program read;;ritetest(input.output);
var x, y ; "integer;
begin
read(x[i,j]*);
write(y[i,j]*);

end.
{((readwritetest,<input,output>,{}),
({(s,o.o.O)
(1,<(integer,<input*,integer,i,j >).(input*,<input>).(output*,<y,integer,i,j>),

(output,<output,output*>)>,
({(..2),([],2),(*,2),(read,1),((),2),(;,2),(write,1),(begin..end,1),

(.,!)}.
{(i,2),(j,2),(x.l),(y,l)}))

(t.o.o.O)}.
{(s.l),(l,t)},
tj)}

166

program readlnwritelntest2 (input,output);
var a, b, c, d, e, f: real;begin

readln(a,b,c);
writein(d,e,f)

end.
{((readlnwritelntest2,<input,output>,{}),

({(s,<>,<>,0)
(1,<(a,<input”>),(input”,<input>),(b,<input“>),

(input”,<input>), (c,<input”>),(input”,<input>),
(output,<output,d,e,f>),(output”,<f>),(output,<output,end-of-line>)>,
({(,.4),(readln,1),((),2),(;,1),(writein, 1) ,(begin..end,1),(.,1)},
{(a , 1) ,(b,1),(c,1),(d,1), (e,1), (f,1)}))

(t,<>,<>,0)},
{ (s , 1) , (1 , t) } ,
t))>

program readwritetest2(input.output);
var a, b, c, d, e, f: real;
begin
read(a,b,c);
write(d,e,f)

end.
{((readwritetest2,<input,output>,{}),

({(s,o,o,0)
(l,<(a,<input“>),(input”,<input>),(b,<input”>),

(input”,<input>),(c,<input”>),(input”,<input>),
(output,<output, d, e, f >),(output”,<f>)>,

({(,,4), (read,1),((),2),(;,1),(write,1),(begin, end,1),(.,1)}.
{(a, 1) , (b, 1) , (c, 1) , (d, 1) , (e, 1) , (f.1)}))

(t,o.o.O)},{(s.D.d.t)},
t))}

program readlnwritelntest3(bang);
var bang : text;
begin

readln(bang.x);
writein(bang,x)

end.
{((readlnwritelntest3,<bang>,{}).

({(s. o.o.O)
(1,<(x,<bang“>),(bang”,<bang>),(bang”,<x>),

<(bang,<bang,bang”>),(bang,<bang,end-of-line>)>,
({(,.2),(readln,1),((),2),(;,1),(writein,1),(begin..end,1),(.,1)},
{(bang,2),(x,2)}))

(t,<>,<>,0)},
{(s,l),(l,t)}.
s,
t))}

167

program readlnwritelntest4(boom);
type boomtype = file of char;
var boom : boomtype;
begin
readln(boom,s);
writein(boom,s)

end.
{((readlnwritelntest4,<boom>,{}),

({(s,<>,<>.O)
(1,<(s,<boom”>),(boom’,<boom>),(boom”,<s>),

(boom,<boom,boom’>),(boom,<boom,end-of-line>)>,
({(,,2),(readln,1),(0,2),(;,1),(writein,1),(begin..end,!),(., 1)},
{(boom,2),(s,2)}))

(t,<>,<>,0)},{(s,l),(l.t)},
S ,
t))}

program readlntest(music);
type musictype = array[1..100] of file of char;
var music : musictype;
begin

readln(music,chopin.patmetheny.beatles)
end.
{((readlntest,<music>,{}),
({(s,o.o.O)

(1,<(chopin,<music">),(music”,<music>),(patmetheny,<music">),
(music”,<music>),(beatles,<music“>),(music’,<music>)>,
({(,,3),(readln,1),((),1),(begin..end,l),(.,1)},
{(music, 1) ,(chopin,1),(patmetheny,1),(beatles,1)}))

(t,<>,<>,0)},
{(s.l).(l.t)},
t))}

program writelntest(music);
type musictype = array[1..100] of file of char;
var music : musictype;
begin

writein(music,chopin,patmetheny,beat les)
end.
{((writelntest,<music>,{}),

({(s.o,<>,0)
(1,<(music,<music.chopin,patmetheny.beatles>),(music’,<beatles>),(music,<music.end-

of-line>)>,
({(,.3),(writein,1),((),1),(begin. .end,l).(.,1)},
{(music,1).(chopin,1),(patmetheny,1).(beatles,1)}))

(t,o.o.O)},
{(s.l).(l.t)},
s,
t))}

program readlntest2(music) ;

168

type musictype = file of char;
var music : musictype;
begin

readln(music);
end.
{((readlntest2 , <music>,{}) ,

({(s,o.o.O)
usic",<music>)>,

({(readln,1) , ((),1),(;,1),(begin..end,1),(.,!)},
{(music,1)}))

(t,<>,<>,0)},
{(s,l),(l.t)},
t))}

program readlntest(music);
begin

readln
end.
{((readlntest,<music>,{}) ,
({(s,o.o.O)

(1,<(input”,<input>)>,
({(readln,1),(begin..end,1),(.,1)},

(t.^U.O)}.
{(s,l),(l,t)},
S ,
t))}

program writelntest(music);
type musictype = array[1..100] of file of char;
var music : musictype;
begin

writein(music)
end.
{((writelntest,<music>,{}),

({(s.o.o.O)
(1,<(music,<music,end-of-line>)>,
o,
({(writein,1),(0,1),(begin..end,1),(.,1)},
{(music,1)}))

(t,<>,<>,0)}.
{(s.l).(i.t)},
tj)}

program writelntest(music);
begin

writein
end.
{((writelntest,<music>,{}),
({(s,o.o.O)
(1,<(output,<output,end-of-line>)>,

({(writein,1),(begin..end,1),(.,1)},

169

program nev/test;
var p : “integer;

{((pagetest,<music>,O) ,
({(s, 0,0,0)

(1,<(output,<output,end-of-page>)>,
({(page,1),(begin..end,1),(..1)}.

(t.<S*U.0)}.
{(s.D.a.t)}.
tin

program nev/test;
type ptrtype = "guitar;
var p : ptrtype;
begin

new(p)
end.
{ ((nev/test ,<>,{}),

({(s,0,0,0)
(1,<(p,<>),(guitar,<p,guitar>)>,<>,

({(new , 1) , (0,1) , (begin, end , 1) , (. , 1)}.
{(p.l)}))

(t,o.o.O)},
{(s.l),(l.t)},
tj)}

(t, 0,0,0)},
{(s.D.U.t)},
tj)}

program pagetest(music);
type musictype = array[1..100] of file of char;
var music : musictype;
begin

page(music)
end.
•{ ((pagetest, <music> , O) ,

({(s,<>,<>,0)
(l,<(music,<music,end-of-page>)>,

({(page,1),(0,1),(begin..end,l),(.,!)},
{(music,lj}))

(t,o.o.O)},
{(s,l),(l,t)},
tj)}.

program pagetest(music);
begin

page
end.

170

begin
new(p)

end.
■{ ((newtent, <> , {}) .

({(s.o.o.O)
(1,<(p,<>),(integer,<p,integer*)>,
«(new,1),(0,1),(begin..end, 1). (., 1)},
<(p.l)}))

(t, 0,0,0)}, {(s.D.d.t)}.
?))}

program disposetest;
var p : “char;
begin

dispose(p)
end.
{((disposetest ,o, {}),
«(s,<>.<>,0)(1,<(char,<p,char>),(p,<nil>)>,

({(dispose,1), (0,1),(begin..end,l),(.,1)},
{(p.D»)

(t,0,0,0)},
{ (b , 1) , (1 , t) } ,
t))>

program newtest;
type ptrtype = “guitar;var p : ptrtype;
begin
new(p,a,b,c)

end.
{((newtest,<>,{}),

({(b,o.o.O)
(l,<(p,<>),(guitar.<p,guitar,a,b,c>)>,

({(,,3), (new, 1) ,(0.1). (begin. . end, 1) , (. , 1)},
{(p, 1) , (a, 1) , (b, 1) , (c , 1)}))

(t.<>,<>,0)},{(s.D.o.t)}.s,
t))}

program disposetest;
type ptrtype = “guitar;var p : ptrtype;
begin

dispose(p,a,b,c)
end.
{((disposetest,<>,{}),
({(s.o.o.O)

171

(1,<(guitar,<p,guitar,a,b,c>),(p,<nil>)>,

({(,,3),(dispose,!),((),1),(begin..end,l),(.,!)},
{ (p, 1) , (a, 1) , (b, 1) , (c , !)}))

(t,<>,<>,0)},
{ (8,1) , (1 , t) } ,
S ,
t))}

program packtest;
begin
pack(a.b.c);
unpack(a,b,c)

end.
{((packtest,<>,{}),
({(s,o,o,0)
(l,<(c,<a,b>),(b,<a,c>)>,

({(,,4) , (pack.l) , (0,2), (;,1),(unpack,!),(begin..end,l),(.,1)},
{(a,2),(b,2),(c,2)}))

(t.o.o.O)},
{(s,l),(l,t)},
tj)>

program newtest;
type ptrtype = “guitar;

guitar = record
electric : char;
acoustic : char;
next : ptrtype;

end;var p : ptrtype;
begin
new(p“.next)

end.
{((newtest,<>,{}),
({(s,o.o.O)
(1,<(guitar,<guitar>)>,

({(*,!),(..2), (new,1),((),!),(begin, end,1)}.
{(next.l),(p,1)}))

(t,o.o.O)}.
{(s.l).(l.t)},
s,
t))}

program newtest;
type ptrtype = “guitar;

guitar = record
electric : “integer;
acoustic : “integer;
next : ptrtype;

end;
var p : ptrtype;
begin
new(p“.electric)

172

end.
{((newtest, <> , {}) ,

({(s,0,0,0)
(1, <(guitar,<guitar>),(integer,<integer,guitar>)>,

«(" , 1) , (. ,2) , (new, 1) , (() , 1) , (begin, .end, 1)},
{(electric,1),(p,1)}))

(t,o,o,0)},
{(s.D.d.t)}.
s,
t))}

program newtest;
type ptrtype = “guitar;

guitar = record
electric : char;
acoustic : char;
next : ptrtype;

end;
var p : ptrtype;
begin
new(p“.next,a,b,c)

end.
{ ((newtest, <>, {}) ,

({(s,<>,<>,0)
(1,<(guitar,<guitar,a,b,c>)>,

(<(" , 1) , (. ,2) , (, ,3) , (new, 1) ,(0.1). (begin. . end, 1)},
{(next, 1) , (p, 1) , (a, 1) , (b, 1) , (c, 1)}))

(t ,o.o,0)},
{ (8,1) , (1 , t) } ,
tj)}

program newtest;
type ptrtype = “guitar;

guitar = record
electric : “integer;
acoustic : “integer;
next : ptrtype;

end;
var p : ptrtype;
begin
new(p“.electric,a,b,c)

end.
{((newtest,<>,{}),

({(s.0,0,0)
(1,<(guitar,<guitar>),(integer,<integer.guitar,a,b,c>)>,

({(",1),(•,2),(,,3),(new.1),((),1),(begin..end,1)},
{(electric,1), (p, 1) , (a, 1) , (b, 1) , (c , 1)}))

(t,<>,<>,0)},
{(s.l).(l.t)}.
S ,
t))}

program disposetest;

173

{((disposetest, <>, {}) ,
({(s,<>,<>,0)

type ptrtype = "guitar;
guitar = record

electric : char;
acoustic : char;
next : ptrtype;

end;
var p : ptrtype;
begin

dispose(p".next)
end.
{((disposetest ,<>,■{}) ,
({(s,o.o.O)

(1,<(guitar,<guitar>)>,
({(“,!),(.,2),(dispose,1),((),1),(begin..end,1)},
{(next,1),(p,1)}))

(t,o.o.O)},
<(s,l),(l,t)},
s,
t))}

program disposetest;
type ptrtype = "guitar;

guitar = record
electric : “integer;
acoustic : “integer;
next : ptrtype;

end;
var p : ptrtype;
begin

dispose(p“.electric)
end.
{((disposetest,<>,{}),
({(s,o.o.O)
(1,<(integer,<integer,guitar>),(guitar,<guitar>)>,

({(“,!),(.,2),(dispose,1),((),1),(begin, end.1)},
{(electric,1).(p,1)}))

(t,o.o.O)},
{(s.l).(l.t)},
tj)}

program disposetest;
type ptrtype = "guitar;

guitar = record
electric : char;
acoustic : char;
next : ptrtype;

end;
var p : ptrtype;
begin
dispose(p“.next,a,b,c)

end.

{((predfunctest2,o,{}) .

174

begin
a
b
c

end.

program predfunctest2;

:= abs(x);
:= sqr(u-x);
:= odd(d)

(1,<(guitar,<guitar,a,b,c>)>,
({(“,1),(.,2),(,,3),(dispose,1),((),!),(begin..end,1)},
{(next, 1) , (p, 1) , (a,l) , (b, 1) , (c, 1)}))

(t,<>,<>,0)},
<(8,l),(l,t)},
S ,
t))}

program disposetest;
type ptrtype = "guitar;

guitar = record
electric : "integer;
acoustic : "integer;
next : ptrtype;

end;
var p : ptrtype;
begin

dispose(p".electric,a,b,c)
end.
■{((disposetest,o,{}) ,
({(s.o.o.O)
(1,<(integer,<integer,guitar,a,b,c>),(guitar,<guitar>)>,

«(“,!).(. .2) ,(, ,3) , (dispose, 1) .(0.1), (begin. . end, 1)},
{(electric,1),(p,1),(a,1), (b, 1) , (c, 1)}))

(t,o,o,0)>,
{(s,l),(l,t)},
t))}

program predfunctestl(input,output);
begin

while eoln do stmt;
end.
{((predfunctestl,<input,output>,{}) ,

({(s.o.o.O)
(1,<>,<input>,

({(eoln, 1) , (while. .do, 1) , (begin. .end,!),(. , 1)},
{})).

(2,<(stmt,<>)>,
({(stmt,1),(;,1)},
{}))(t,<>,<>,0)},

{(s, 1) , (1,2),(2,1), (1,t)},
s,
t))}

B.7

175

Structured Data Types
program structuredtype;
type cptr = “c;

c = record
v : integer;
next : cptr

end;

({(s,0,0,0)
(1, <(a,<x>),(b,<u,x>),(c,<d>)>,

({(abs,1),((),3),(:=,3),(;,2),(-,1),(sqr,1),(odd,1),(begin..end,1),
(..!)}.

{(x, 2),(a,1),(u,1),(b,1),(d,1),(c,1)}))
(t,<>,<>,0)J,{(s.D.d.t)}.

tj)}
program predfunctest3;
begin

a := trunc(round(s mod r))
end.

{((predfunctest3,<>,{}),
({(s,o.o.O)

(1,<(a,<s,r>)>,

({(mod,1),(round,1),((),2),(trunc,1),(:=,1),(begin..end,1),(.,1)},
{(s,1),(r,1),(a,1)}))

(t,<>,<>,0)},
{(s,l),(l,t)}»

t))}

program predfunctest4;
begin

y := abs(round(x)+trun(k))+sqr(s*r);
y := abs(x-y) ♦ c mod inte(w+e/r);
k := sqrt(abs(x))*a;
z := inter(a+b)

end.

{((predfunctest4 ,<>,{}),
({(s,o.o.O)

(1,<(y,<x,k,s, w>), (y ,<x, y ,c, (inte,«w ,e.r»)>), (k,<x,a>),
(z,<(inter, «a,b»)>)>,

({(round,1),((),9),(trun,1),(+.4).(abs,3),(*,3),(sqr.1),(:=.4),
(;,3),(-,l),(/,l),(inte,1),(mod,1),(sqrt.1).(inter,1).(begin..end,1),
(..1)},

{(x , 3) , (k, 2) , (s, 1) , (w, 2), (y, 3), (c , 1) , (e, 1), (r, 1) .
(a,2),(b,1), (z,1)}))

(t,o.o.O)},
{(s.l).(l.t)},

t))}

176

var x : “c;
begin

new(x);
x“. v := 7;
x := x“.next

end.

{((structuredtype,<>,{}),
({(s.o.o.O)

(1,<(x,<>),(c,<x,c>),(c,<x,c,7>),
(x,<x,c>)>,

({(new,1),((),1),(;,2),(“,2).(.,3),(:=,2),(begin..end.l)},
{(x,4).(v,D.(7,l),(next,l)}))

(t,<>,<>,0)},
{(s.D.d.t)},
S,
t))}

program structuredtype;
type apartptr = “apartment;

apartment = record
floor : integer;
letter : lettertype;
wing : (north,south,east.west)

end;
lettertype = record

paper : char;
envelope : integer

end;
var tolet, forlease : “apartment;
begin

tolet“.floor := 2;
tolet“.wing := east;
tolet".letter := a

end.
{((structuredtype,<>,{}),
({(s.o.o.O)
(1,<(apartment,<tolet,apartment,2>),(apartment,<tolet.apartment,east>).

(apartment,<tolet,apartment,a>)>,
({(“,3), (.,4) , (: = ,3),(;,2),(begin..end.l)}.
{(floor,1),(2,1),(tolet,3),(wing.1).(east.1).(letter.l).(a.l)}))

(t,<>,<>,0)},
{(s,l).(l.t)}.
t))}

program structuredtype;
type

apartment = record
floor : integer;
letter : char;
wing : (north,south,east.west)

end;
var tolet, forlease : apartment;
begin

tolet.floor := 2;

177

program withtest;
type apartment = record

floor : integer;
letter : char;
wing : (north,south,east.west)

end;
var tolet, forlease : apartment;
begin

with tolet do
begin
read(floor);
arrange(wing);
forlease := tolet;
floor := forlease.floor;
forlease.wing := tolet.wing;
letter : = ’c’;
wing := east

end
end.

{ ((withtest, <> , {}) ,
({(s.o.o.O)

(1,<(tolet,<tolet,input“>) , (input” , <input>) , (arrange, <<tolet») ,
(forlease,<tolet>),(tolet,<tolet,forlease>),(forlease,<forlease,tolet>),
(tolet,<tolet, ’c’>) ,(tolet,<tolet,east>)>,
({(read.l), (0 ,2),(;,6),(arrange,1),(: = ,5),(.,4),(begin..end,2).(with. .do,l)},
{(floor,3),(wing,4),(tolet,2),(forlease,3).('c'.1).(letter.1),(east,1)}))

(t, 0,0,0)},
{(s,l),(l,t)},
t))}

program structuredtype;
type elementptr = “element;

element = recorddata : integer;
left,right : elementptr

end;
var current, saved : elementptr;
begin
new(saved);
saved".right := nil;
current := saved".left;

end.
{((structuredtype,<>,{}),
({(s,o.o.O)

(1,<(saved,<>), (element,<saved,element>),(element,<saved.element,nil>),
(current,<saved,element>)>,

({(new', 1) , (() , 1) , (; ,3) , (“ ,2) , (. ,3) , (: = ,2) , (begin. . end, 1)} ,
{(saved, 3) , (right, 1) , (nil, 1) , (left, 1) , (current ,1)}))

(t,0,0,0)},

tolet.wing := east;
forlease.wing := tolet.wing;
writein(tolet.wing);

end.

178

{(s,l),(l,t)},
8 .
t))}

program structuredtype;
type elementptr = '‘element;

element = record
data : integer;
left,right : elementptr

end;
var current, saved: elementptr;
begin
new(current".left);
read(current*.data);

end.
{((structuredtype,<>,{}),

({(s,<>,<>,0)
(1,<(element,<element>),(element,<input“,element>),(input",<input>)>,

({(“,2),(.,3), (new.l) , (() ,2) , (; ,2) , (read.l) , (begin, .end.l)},
■{(left, 1) , (current ,2) , (data, 1)}))

(t,<>,<>,0)},
{(s,l),(l,t)},
?))}

program structuredtype;
type elementptr = 'element;

element = record
data : integer;
tag : pointer;
left,right : elementptr

end;
pointer = “integer;

var current, saved: elementptr;
begin
new(current'.tag);
current'.right".left := current;
current := current".right;

end.
{((structuredtype,o,{}).
({(s.o.o.O)
(1,<(element,<element>),(integer,<integer.element*),(element,<current,element,current*) ,

(current,<current,element*)*,
({(“,4),(.,5),(new,1),((),1).(;,3),(:«,2),(begin end,1)},
{(tag,1),(current,5),(right,2),(left.1)}))

(t,<>,<>,0)},{(s.D.d.t)}.
tj)}

program structuredtype;
type elementptr - “element;

element = record
data : integer;
left,right : elementptr

end;
var current, saved: elementptr;

*

var

179

program withtest;
type elementptr = “element;

element = recorddata : integer;
left,right : elementptr

end;
var current, saved: elementptr;
begin

with current" do
begin

left".data := saved".data;
current := right;
right := current;

end
end.
{ ((withtest, <>, {}) ,

begin
current".next".data := saved".data;
current := current".right;
current".right := current;

end.
{((structuredtype, <>, O) ,

({(s,<>.<>,0)
(1,<(element,<current,element,saved,element*),(current,<current,element>) ,

(element,<current,element,current*)>,
({(*,5),(.,6),(:=,3),(;,3),(begin..end,l)},
{(next,1),(data,2),(saved,1),(current,5),(right, 2) }))

(t,o.o.O)},
{(s,l),(l,t)},
S ,t))}

program structuredtype;
type ptr = "elem;

elem = integer;
goody = file of char;
good : goody;
p : ptr;

begin
writein(good");
good" := ’z’;
p- := 2;

end.
{((structuredtype,<>,•{}) ,

({(s.o.o.O)
(1,<(output",<good‘>),(output,<output.output"*),(output,<output.end-of-line*),

(good",<’z’>),(elem,<p,elem,2>) >,
({(".3),(writeln,1). (().!),(;,3).2).(begin..end.1).(.,I)},
{(good,2),(*z',1),(2,1),(p,1)}))

(t,<>,<>,0)}.{(s.D.U.t)}.
t))}

B.8

180

({(s,<>,<>,0)
(1 ,<(element,<current,element,saved.element*),(current,<right>),

(element,<current,element,current*)*,
«(‘,2),(. ,3) , (: = ,3),(; ,3), (begin, .end,2), (with, .do.l)},
{(data,2),(saved,1),(left,1),(right,2),(current,2)}))

(t,<>,<>,0)},
{(s.l).(l.t)},
t))}

{((a,<*,{}),
({(s,o.o.O)
(1,<(stmtl,<>)*,

({(stmtl, 1) ,(begin, end,1),(;,1)}.
{}))(t,<>,<>,0)},

{(s.l).(l.t)}.
s,
t)),((c.o.O),
({(s,0,0,0)
(2,<(stmt2,o)>,

({(stmt2,1),(begin..end,1),(;,!)),
(t.o^o.O)},

{(s,2),(2,t)},
tS)).

((e,<>,{}),
({(s.o.o.O)

(3,<(e,<something>)>,

({(:=,!),(begin, .end.l),(;,!)},
{(something,1),(e,1)}))

(t,o.o.O)},
{(s,3),(3,t)},

Seuencing and Nesting of Procedure and Function Dec­
laration

program proceduretest;
procedure a;

begin stmtl end;
procedure b;
procedure c;

begin stmt2 end;
procedure d;

function e:integer;
begin e := something end;

begin stmt3 end;
begin stmt4 end;

begin
stmt5

end.

181

tj),
((d,<>,{}),
({(s,0,0,0)

(4,<(stmt3,<>)>,

({(stmt3,1).(begin..end,1),(;,1)}.
, <»> „(t, 0,0,0)},

{(s,4),(4,t)},

tj).
((b,o,{}),
({(s.0,0,0)

(5,<(stmt4,<>)>,

({(stmt4,l),(begin..end,l),(;,1)},
z „(t, <>,<>,0)},

<(s,5),(5,t)},
S ,
t)),

((proceduretest,<>,{}),
({(s, o.o.O)

(6,<(stmt5,<>)>,
({(stmt5,l),(begin..end.l),(.,1)},

(t,<S>U.0)j.
{(s,6),(6,t)}, s,
t))}

program proceduretest;
procedure a;

begin stmtl end;
procedure b;

begin stmt2 end;
procedure c;

begin stmt3 end;
begin

stmt4
end.

{((a.o,{}),
({(s,0,0,0)

(1 ,<(stmtl,<>)>,
({(stmtl, 1) ,(begin, end,1),(;.1)}.

(t.<^.O)J.
{(s.l).(l.t)},
tj).

((b. 0,0),
({(s.0,0,0)

(2,<(stmt2,<>)>,
({(stmt2,l),(begin..end.l),(;,!)},
O))

B.9

182

(t,<>,<>,0)},
{(s,2),(2,t)},
S ,
t)),

((c.o.O),
({(s, 0,0,0)

(3,<(stmt3,<>)>,

({(stmt3,1),(begin..end,1),(;,1)},

(t, 0,0,0)},
{(s,3),(3,t)},

tj),
((proceduretest,<>,{}),
({(s,o,o,0)

(4,<(stmt4,<>)>,
({(stmt4,1),(begin..end,1),(.,!)},

, <>)) ,(t,<>,<>,0)},
{(s,4).(4,t)},
tj)}

var b:integer);

z 3;

Detecting Glabal Variable
program globaltest;
const max = 10;
var x, y, z : integer;
procedure first(a:integer;
begin

b := a + x - y;
end;
function second:integer;
var z ; integer;
begin

z := 3;
x := y + z;
second := x;

end;
begin

x : = 1; y : = 2;
first (x,z);
y := second;

end.
•{((first ,<a,b> ,{x,y}),

({(s,<(a’,<a>)>,<>,0)
(l,<(b,<a’,x,y>)>,

({(+»1), (-,1) , (: = ,1),(;,2),(begin..end,1)}.
{(a,l),(x,l).(y.l),(b,l)}))

(t,<>,<>,0)}.
{(s.l).(l.t)},
s >
t)),

((second,<>,<y,x}),

if y > x then

183

end;
begin

({(s,<>,<>,0)
(3,< (z,<3>), (x ,<y,z>) ,(second,<x>)>,

({(:=,3),(;,4),(+,l),(begin, end,1)},
{(3,1),(z,2),(y,1),(x,2),(second,1)}))

(t.0,0,0)},
{(s,3),(3,t)},
s,
t)),

((globaltest,<>, {}),
({(s.<>.<>,0)
(7,<(x,<l>),(y,<2>),(z,<3>),

(first,<<x>,<z»),(y,<second>)>,

({(:=,4),(;,5),(,,1),(first,1),((),1),(begin..end,!),(.,!)},
{(1,1),(x,2),(2,1),(y,2),(3,1),(z,2),(second,1)}))

(t,o,o,0)},
{(s,7),(7,t)},
s,
t))}

B.10 Value Parameters
program divide(input,output);
var a,b,x,y,q,r : integer;
function max(a,b:integer).integer;
begin

max := a;if a < b then
max := b;

end;
function min(a,b: integer):integer;
begin
min := b;
if a < b then
min := a

end;
procedure quot(x,y:integer;var q,r:integer);
begin

q : = 0;
if y > x then
begin

q := 0;
r := x;end

else
if y = x then
begin

q := 1;
r := 0

end
else
begin
quot(x-y,y,q,r);
q := q + 1

end

then begin

184

readln(x,y);
if (x>0) and (y>0)

a := max(x.y);
b := min(x,y);
quot(a,b,q,r);
writeln(’the quotient is ’,q,’the remainder is ’,r)

end
else writein(’error in input’)

end.

<((max,<a,b,max>,{}) ,
({(s,<(a’,<a>),(b’,)>,<>,0)
(1,<(max,<a’>)>,

<a’,b’>,
({(:=,1),(;,2),(<,1),(if. .then, 1) , (begin. .end, 1)},
{(a,2),(max,l),(b,l)})),

(3,<(max,<b’>)>,
«(: = .!), (..!)>.
{(b,1),(max,1)}))

(t,<>,<>,0)},
{(s,l),(l,3),(3,t),(l,t)},
s.
t)),

((min,<a,b,min>,{}),
({(s,<(a’,<a>),(b’,)>,<>,0)

(6,<(min,<b’>)>,
<a’,b’>,
({(: = ,!) ,(; , 2) , (<, 1) , (if ..then,1),(begin..end,1)}»
{(b,2),(min,1),(a,1)})),

(8,<(min,<a’>)>,
({(:-.!)},
{(a,1),(min,1)}))

(t,<>,<>,0)},
{(s,6),(6,8),(8,t),(6,t)},
t)),

((quot,<x,y,q,r>,{}),
({(b,<(x’ ,<x>) , (y1 ,<y>)>.o,0)
(10,<(q,<0>)>,

<y’,x’>,
({(:=,!),(;.2),(>,1),(if..then,1),(begin, end,1)},
{(O,l),(q.l).(y,l).(x.l)})).

(12^<(q,<0>), (r.tx1*)*.
({(:=,2),(;,2),(begin..end,1)},
{(0.1),(q,l),(x.l),(r.i)})).

(15,<>.
<y’,x’>,
({(=,1),(if..then,1),(else,1)},
{(y.l).(x.l)})).

(16,<(q,<l>),(r,<0>)>,
({(:=,2),(;.l),(begin..end,1)},
{(l.l).(q.l).(0.1),(r.l)»),

(18 . < (quot, <<x ’ ,y ’> ,<y '> , <q>, <r») , (q, <q, 1>) >,

1

B.ll

185

«(- .1) . (. .3) , (quot ,1) , (() , 1) , (; ,1) , (+,1) , (: = ,1) , (begin, .end, 1) ,
(else,1)j,
{(x, 1) , (y,2) , (q,3) , (r, 1) , (1,1)}))

(t,<>,<>,0)>,
<(s,10),(15,16),(15,18),(10,12),(12,t),(10,15),(16,t),(18,t)},
tj).

((divide,<input,output>,{}),
«(s,<>,<>,0)

(22, < (x, <input*>) , (input** ,<input>) , (y,<input->) ,
(input-,<input>)>,

<x,0,y,0>,
({(,, 1),(readin,1) , (() , 3) , (; , 1) , (> ,2) ,(and,1),(if..then,1),(begin..end, 1) ,

(.,1)}.
{(x,2),(y,2),(0,2)})),

(24, < (a, < (max, «x>, <y>>) >) , (b, < (min, «x>, <y»)>) , (quot, <<a>, , <q>, <r») ,
(output,<output,’the quotient is ’,q,’the remainder is ’,r>),
(output-,<r>),(output,<output,end-of-line>)>,
({(,,8),(max,1),((),4),(: = ,2),(;,3),(min,1),(quot,1), (writeln,1),

(begin..end,1)},
{(x,2),(y,2),(a,2),(b,2),(q,2),(r,2),(’the quotient is ’,1),
(’the remainder is ’,1)})),

(28,<(output-,<’error in input’>),(output,<output,output“>),
(output,<output,end-of-line>)>,

({(writein,1),((),1),(else,1)},
{(’error in input’,1)}))

(t,o.o.O)},
{(s,22),(22,24),(24,t),(22,28),(28,t)}.

t))}

100,
n do

Selected Pascal programs
program reverse(input,output);
const n = 100;
var a : array [l..n] of real;

temp : real;
i, j, k : integer;
n : integer;

begin
readln(n);
if n>100 then n
for i := 1 to
read(a [i]) ;

readln;
for i := 1 to n-1 do
begin
k := i;
for j := i + 1 to n do

if a[k] < a[j] then k := j;
temp := a[i];
a[i] := a[k];
a[k] := temp

end;

186

for i := n downto 1 dowritein(a [i]);writeinend.
{((reverse,<input,output>,{}),

«(s,<>,<>,0)
(l,<(n,<input*>),(input",<input>)>,<n,100>,

({(readln.l),((),1),(;,1),(>,1),(if..then.l),(begin.,end,l),(.,!)},
{(n,2),(100.1)})),(3,<(n,<100>)>,
({(:=.!)},{(100,1),(n.l)})).(5,<(i,<!>)>,
({(;.!)},{(1.1).(i.l)})).

(6,0,<i,n>,
({},{(n.l)})),

(7,<(a,<input*,i>),(input*,<input>),(i.<i>)>,
({([],1), (read,1), ((),!)},{(i.l).(a.l)})),

(10,<(input*,<input>),(i,<!>)>,
({(;,2)}.
{(1,1),(i,))})),

(11,<>,<i,n,1>,
({(-.!)).{(n.l),(1.1)})),

(12,<(k,<i>),(j,<i,1>)>,<>,
({(:=,1).(;.1).(+,1),(for..to..do,1),(begin..end,1)},
{(i,2).(k.l).(1.1),(j.1)})).

(14,<>.<j,n>,
({},{(n.l)})),

<15ia>k a j>
({([],2).(<.l).(if..then.l)},
{(k.l).(a.2),(j,1)})).

(16^<(k,<j>)>,
({(:=,!)}.{(j.l).(k.l)})),

(17,<(j.<j>)>.
({},
{})).(21,<(temp,<a,i>),(a,<a.i,a,k>),(a,<a ,k,temp>),
(i,<i>)>.

({(;,3)},

= 1 to n do

187

end
end;
begin

readCn) ;
for i := 1 to n do

read(x [i]);
readln;
readln(item);
while item <> 0 do
begin

h := n;
1 := 1;
binary(h,1,j);
if j = 0 then writein(’not found*)

end;
if item
begin
h := loc-1;
if h >= 1 then binary(h,1,j)

{(k,2),(temp,2),(a,4),(i.2)})),
(23^<(i,<n>)>,

{(n,l),(i,l)})).
(24,0,

({}.
{(1.1)})),

(25,<(output*,<a,i>),(output,<output,output*>),(output,<output,end-of-line>),
(i,<i>)>,
({([], 1). (writein, 1),((), 1)},
{(i,l).(a,l)})),

(27,<(output,<output,end-of-line>)>,
«(;.!)}.
{}))(t,<>,<>,0)},

{(s.l),(1,3),(3,5),(1,5),(5,6),(6,7),(7,6).(6.10),(15,16).(16,17),
(15,17),(12,14),(14,15),(17,14),(14.21),(10.11),(11.12),(21,11),(11.23).(23,24).
(24,25),(25,24),(24,27),(27,t)},

t))}
program search(input,output);
var n : integer;

x : array [1..10] of integer;
i,j,h,1 : integer;
item : integer;

procedure binary(h,l : integer; var j : integer);
var loc : integer;
begin

j := 0;
loc := round((h+l)/2);
if item = x[loc] then j := loc;
if item < x[loc] then
begin

1 := loc + 1;
if h >= 1 then binary(h,1,j)

x[loc] then

188

else writein(item,’found at *,j);
readin(item)endend.

{((binary,<h,l,j>,{item,x}),
({(s,<(h’,<h>),(1*,<!>)>,<>,0)
(1,<(j,<0>),(loc,<h’,1’,2>)>,

<item,x,loc>,
({(:=,2),(;.3),(t.!),((),2),(/.I).(round.l),([],l),(=.l),(if..then,1),(begin..end, 1)},
{(0,1),(j,1),(b,1),(1,1),(2,1),(loc,2),(item,1),(x.l)})),

(4,<(j,<loc>)>,
({(:-,!)},{(loc.l).(j.l)})),

(6,<>,<item,x,loc>,
({(;,!)},{(item,1),(loc,1),(x,1)})),

(7,<(1’.<loc,1>)>,<b’,l’>,
({(+,!),(:“,1),(;,1).(>=,1),(if..then,1),(begin, end,1)},
{(loc,1),(1.1),(1,2),(h,1)})),(9,<(binary,<<h'>,<!’>,<j>>)>,
({(, ,2), (binary, 1) .(0,1)},
{(h.l).(1.1).(j.1)})).(12,o,
<item,x,loc>,
({(;,!)},{(item,1).(loc,1),(x.1)})),

(13,<(h*,<loc,l>)>,ch’.l'*,
({(-,!),(:=,!),(;.1),(*=,1).(if..then,1),(begin, end.1)},
{(loc,1),(1,1),(h,2),(1,1)})),(15,<(binary,<<h’>,<1’>,<j>>)>,
({(,.2),(binary,1).(0,1)},
{(h.l),(1.1).(j.1)}))

(t,o,o,0)},
{(s.l).(1,4),(4,6). (1,6),(7.9).(6.7).(6,12).(9.12).(7,12).(13.15). (12,13),(12.t),(15,t).(13,t)},
s,t)).((search,<input,output*,{}).
({(s.o,o,0)
(18,<(n,<input">),(input*,<input*), (i,<!>)>,

({(read,1),(0.1),(;,1).(for..to. do,1),(begin end,1).(.,1)}.
{(n,1),(1,1),(i,1)})),(20. o,

<i,n>,
({}.{(n.l)})),(21,<(x,<input',i>),(input',<input>),(i,<i>)>,
({([].!).(read.1).(0.1)}.
{(i.l).(x.l)})),

*

189

or (ch > *z’) then
then ch ‘O'

(24,<(input”,<input>),(item,<input”>),(input”,<input>)>,

{(item.l)})),
(25,0,

<item,0>,
({(o.l), (while, .do, 1)},
{(item,1),(0,1)})),

(26,<(h,<n>),(1,<1>),(binary,<<h>,<l>,<j>>)>,
<j,0>,
({(:=,2),(;,3),(,,2),(binary,!),((),!),(=,1),(if..then,1),(begin..end,1)},
{(n,1),(h,2),(1,1),(1,2),(j,2),(0,1)})),

(30,<(output",<’not found’>),(output,<output,output">),(output,<output,end-of-line>)>,
({(writein,1), (0,1)},
{(’not found’,1)})),

(31,<(output,<output,item,’found at ’,j>),(output”,<j>),(output,<output,end-of-line>)>,
({(, ,2), (writein, 1) ,((),!), (else.l)},
{(item,1),(’found at ’,1), (j,1)})),

(33,<(item,<input*>),(input”,<input>)>,
({(;,!)},
{(item.l)}))

(t.o.o.O)},
{(s,18),(18,20),(20,21),(21,20),(20,24),(26,30).(30,33),(26,31),(31,33),(25,26).
(33,25),(25,t),(24,25)}.
s,
t))}

program code(input,output);
var codemat : packed array[’a’..’0’,1..40] of boolean;

i : integer;
ch :char;
error : boolean;

begin
error := false;
for i := 1 to 40 do
codemat[’0’,i] := false;

for i := 1 to 40 do
for ch := ‘a’ to ’z’ do
codemat[ch,i] := false;

i := 1;while not eoln do
begin
read(ch);
if (ch < 'a')

if ch = ’ ’
else
begin
writein(’error in input’);
error := true

end;
if not error then
codemat[ch,i] := true;

i := i + 1
end;

end.
{((code,<input,output>,{}),

({(s.<>,<>,0)

190

(1,<(error,<false>),(i,<!>)>,

({(:=,1),(;,1),(for..to..do,1),(begin..end,1),(.,1)},
{(false,1),(error,1),(l,l),(i,l)})),

(3,<>,
<i,40>,
({},
{(40.1)})),

(4,<(codemat,<codemat,’0*, i,false>),(i,<i>)>,
({(..1).([],!),(: = ,!)},
■{(’O’ ,1) , (i , 1) , (false,1) , (codemat ,1)})) ,

(6,<(i,<!>)>,
({(;.!)},{(1.1),(i.i)})),

(7,0,
<i,40>,
({}.{(40,1)})).

(8,<(ch,<’a’>)>,
({(for..to.,do,l)},
<(’a ’ ,1),(ch,1)})) ,

(9,<>,
<ch,’z’>,(O,
{(•z’,1)})),

(10,<(codemat,<codemat,ch,i,false>),(ch,<ch>)>.
({(,.1).([].D.(: = .!)}.
{(ch,1) ,(i,1),(false,1),(codemat,1)})),

(11 ,<(i,<i>)>,
«>.
{})).

(13,<(i,<!>)>,
({(;,2)},
{(1,1),(i.l)})),

(14,0.<input>,
({(eoln,1),(not,1),(while..do,1)},
{})).

(15,<(ch,<input">),(input",<input>)>,
<ch,'a’,ch,'z’>,
({(read,!).((),3),(;,!),(<,!),(>,!),(or.1),(if..then.1),(begin..end,1)}
{(ch.3),('a',l),('z',l)})).

(17,o.<ch,’ ’>,
({(=,1).(if. then.l)},{(ch,l).e -.I)})).

(18^<(ch,<'O’>)>,
({(:=.!)}.
{(’O'.l).(ch.l)})),

(19,<(output",<'error in input'>).(output,<output,output">),(output,<output,end-of-
line>),

(error,<true>)>,

¥

191

({(writein,1),((),1),(;,1),(:=,1),(begin..end,1),(else,1)},
{(’error in input1),(true,1),(error,1)})),

(23,<>,
<error>,
«(;.!)}.
{(error,1)})),

(24,<(codemat,<codemat,ch,i,true>)>,
([],!).(: = .!)},

{(ch,1),(i,1) ,(true.l),(codemat,1)})),
(26^<(i,<i,l>)>,

({(;.2)},
<(i.2).(1,1)}))

(t,<>,<>,0)},
{(s.l),(1,3),(3,4),(4,3).(3,6),(8,9),(9,10),(10,9),(9.11),(6,7).
(7,8),(11,7),(7,13),(17,18),(17,19),(15,17),(15,23),(18,23),(19.23),(23.24),
(24,26),(23,26),(14,15),(26,14),(14,t),(13,14)},

s ,
t))}

program positiveonly(filel,file2);
type ftype = array[1..10] of integer;
var filel, file2 : file of ftype;

a : ftype;
begin

reset(filel);
rewrite(file2);
while not eof(filel) do
begin

a := filel*;
if a[l] > 0 then
begin

file2‘ := filel*;
put(file2)

end;
get(filel);

end
end.
{((positiveonly,<filel,file2>,{}),

({(s,<>,<>.0)
(1,<(filel*,<filel>),(file2,<>)>,

({(reset,1),(0,2),(;,2).(rewrite,1),(begin..end.l),(..1)}.
{(filel,1),(file2,1)})),

(3,<>,
<filel>,
({(eof,1),(().1),(not.1).(while, .do.1)}.
{(filel,1)})),

(4,<(a,<filel“>)>,
<a,1,0>,
({(‘.1),(: = .1).(:.1), ([].!).(>,1).(if..then,1).(begin..end,1)},
{(filel,1),(a,2),(1.1).(0.1)})).

(6,<(file2“,<filel“>),(file2,<file2,file2*>)>,
({(’,2),(:=,1).(;,1), (put.l) ,(0.1). (begin, end.l)},
{(filel,1),(file2,2)})),

(10,<(filel*,<filel>)>,

192

(<(;.2)}.
{(filel,1)}))

(t,<>,<>,0)},
{(s,1),(4,6),(6.10),(4,10),(3,4),(10,3).(3,t),(1,3)},
s,
t))}

program positiveonly2(filel,file2);
type ftype = array[1..10] of integer;
var filel, file2 : file of ftype;

a : ftype;
begin

reset (filel);
rewrite(file2);
while not eof (filel) do

begin
read(filel,a);
if a[l] >0 then
write(file2,a)

end
end.
{((positiveonly2,<f ilel ,file2>,O) .

({(s,<>,<>,0)
(l,<(filel*,<filel>),(file2,<>)>,

({(reset,1), (0,2),(;,2),(rewrite,1),(begin..end.l),(.,1)},
{(filel,1),(file2,1)})),

(3,o,
<filel>,
({(eof,1),(0,1),(not,1),(while..do, 1)},
{(filel,1)})).

(4,<(a,<filel‘>),(filel“,<filel>)>,
<a,l,O>,
({(,,1),(read,l),((),l),(;,l),([],l).(>,l),(if..then,1),(begin..end,1)},
{(filel,1),(a,2).(1.1).(0,1)})),

(6,<(file2“,<a>), (file2,<file2.file2“>)>,
({(, ,1), (write, 1). (0.1)}.
{(file2,1) , (a,1)}))

(t,0,0,0)}.
{(s , 1) , (4,6) , (3,4) , (3, t) , (6,3) , (4,3) . (1.3)},
S •t))}

program exp(input,f);
var a : packed array[1..10] of char;

f : text;
i : integer;

begin
rewrite(f);for i := 1 to 10 do

re ad(a[i]5;
write(f,a)

end.
{((exp,<input,f>,{}),

({(s.o.o.O)
(l,<(f,<>),(i,<!>)>,

193

({(rewrite,!),((),!),(;,1),(for..to..do,1),(begin..end,!),(.. 1)},
{(f,1),(1.1),(i.l)})),

(3,<>,
<i,10>,
({}.
{(10,1)})),

(4 , <(a,<input~ ,i>) , (input** ,<input>) , (i,<i>)>,
({((],1),(read.1),((),!)},
{(i,1),(a,1)})),

(6,<(f*,<a>),(f,<f,f->)>,
({(;.!)}.
{(f,1),(a,1)}))

(t.0,0,0)},
{(s.l),(1,3),(3,4),(4,3),(3,6),(6,t)},
tj)}

program dumpdata(data,output);
var ch : char;

data : text;
begin
reset(data);
while not eof(data) do
begin
while not eoln(data) do

begin
read(data,ch);
write(ch)

end;
readln(data) ;
writein;

end
end.
{((dumpdata,<data,output>,{}),
({(s.o.o.O)
(1,<(data“,<data>)>,

({(reset ,1),((),1),(;,1),(begin, end.1),(.,1)>.
{(data ,1)})),

(2,<>,
<data>,
({(eof , 1) , ((), 1).(not,1).(while. do,1)},
{(data,1)})),

(3,<>,<data>,
({(eoln,1),((),1),(not,1),(while, do,1),(begin end.1)},
{(data , 1)})) ,

(4 , <(ch, <data~>) , (data“ , <data>) , (output**, <ch>) ,
(output,<output,output“>)>,
({(,,1),(read,!),((),2),(;,!)»(write,1),(begin, end,1)},
{(data,1),(ch,2)})),

(9,<(data** ,<data>) , (output,<output,end-of-line>)>,
({(;.3)}.
{(data.1)}))

194

(t, 0,0,0)},{(s,1),(3,4),(4,3),(3,9),(2,3),(9,2),(2,t),(1,2)},
t))}

program pointers(input,output,dfile);
type line = packed array [1..80] of char;

reclink = “rectype;
rectype = record

data : line;
link : reclink

end;
var list : rectype;

dfile : text;
head, p, next : reclink;
i : integer;

begin
reset(dfile);
new(p);
head := p;
while (not eof(dfile)) do

begin
i : = 1;
while (i <= 80) and (not eoln(dfile)) do
begin

read(dfile,p“.data[i]);
i := i + 1

end;
readln(dfile);
next := p;
new(p);
next".link := p;

end;
next“.link := nil

end.
{((pointers,<input.output,dfile>,{}),

({(s.<>,<>,0)
(l,<(dfile“,<dfile>),(p,<>),(rectype,<p.rectype>),

(head,<p>)>,

({(reset,!),((),2),(;,3). (new,1),(:»,1).(begin end.1).(..1)}.
{(dfile,1),(p,2),(head.1)})).

(4,0,
<dfile>,
({(eof,1),((),2).(not.1).(while, do.l)}.
{(dfile,1)})),

(5,<(i,<!>)>,

({(:=,1),(;,1).(begin..end,1)},
{(l,l),(i,l)»).

(6,<>,
<i,80,dfile>,
({(<=, 1) , (0 ,3) , (eoln. 1) , (not, 1) , (and , 1) . (’while . .do.l)},
{(i,1),(80,1),(dfile,1)})).

(7,<(rectype,<dfile“.rectype,i>),(dfile“,<dfile>),(i,<i,1>)>,
({(“, 1) , (• , 1) , ([] . 1) , (, , 1) , (read, 1) , (() , 1) , (;, 1) , (+, 1) ,

(:=,1),(begin..end,1)},

195

end.

■{((primes, <input,output>,{}) ,
({(s.o.o.O)
(1,<(sett,<2,50>),(prime,<>),(next,<2>)>,

<>.
(<(..,1).([].2),(:=.3),(;.3),(begin .end.1).(., 1)},
{(2,2),(SO,1),(sett,1).(prime,1).(next,1)})),

(4,<>,<next,sett>,
({(in,1),((),1),(not,1),(vhile. do.1).(repeat..until. 1)>,
{(next,1),(sett,1)})),

(5,<(next,<next>)>,
({(succ.l),((),!),(:=,!)},
{(next,2)})),

(8,<(prime,<prime,next>),(j,<next>)>.
({(:,3)},
{(next,2),(j.1),(prime,2)})) ,

(9,0,
<j,n>,

{(dfile.l),(data,1),(i,3),(p, 1),(1,1)})) ,
(14,<(dfile*,<dfile>),(next,<p>),(p,<>),

(rectype,<p,rectype>),(rectype,<next.rectype,p>)>,
({(;,5)},
{(link,1),(p,3),(next,2),(dfile,1)})) ,

(16,<(rectype,<next.rectype,nil>)>,
({(;,!)},
{(link,1),(nil,1),(next, 1)}))

(t,o.o.o)},
{(s,l),(6,7),(7,6),(6,14),(5,6),(4,5),(14,4).(4,16).(1,4),(16,t)},
t))}

program primes(input,output);
const n = 50;
var sett, prime : set of 2. .n;

next, j : integer;
begin

sett := [2..50];
prime := [];
next := 2;
repeat

while not (next in sett) do
next := succ(next);

prime := prime + [next];
j := next;
while j <= n do
begin

sett := sett - [j];
j := j + next

end
until sett = [] ;
for j := 1 to n do

if j in prime then
writeln(j)

then,1)},

person

196

({(<=,1),(while..do,l)},
{(j.l).(n.l)})),

(10,<(sett,<sett, j>), (j,<j,next>)>,
({([],!).(-,!),(:=,2),(;,!),(+,!),(begin..end,1)},
{(sett,2),(j,3),(next,1)})),

(12.0,
<sett>,
({([],1).(=,!)},
{(sett,1)})),

(14i<(j,<!>)>,
({(;,!)>.{(1,1). (j ,1)»),

(15,0,
<j,n>,
({>.{(n.l)})),

(16,o,<j,prime>,
({(in,1),(if..then,1)},
{(j.1).(prime,1)})),

(17,<(output“,<j>),(output,<output,output“>),(output,<output,end-of-line>)>,
({(writein,1),((),1)},
{(j.l)})),

(18,<(j,<j>)>,<>.(O,
{(s.l), (4,5), (5,4), (4,8). (9.10). (10.9). (9.12). (8.9), (12.14). (12.4).
(1,4) , (16,17) , (17,18) , (16,18) ,(14.15).(15.16).(18.15).(15.t)} .
s,
t))}

program recordl(input,output);
type name = record

last : packed array(1..12] of char;
first : packed array[1..10] of char;
init : char

end;
address = record

street : packed array[1.20] of char;
cities : packed array[1..20] of char

end;
= record

pname : name;
paddress : address;
ssn : integer;
depend : integer;
mar : boolean

end;
var student : person;

i : integer;
begin

with student do
begin

for i := 1 to 12 do

^4

197

read(pname.last[i]);
for i := 1 to 10 do
read(pname.f irst[i]);

read(pname.init);
for i := 1 to 20 do
read(paddress.street [i]);

for i := 1 to 20 do
read(paddress.cities[i]);

read(ssn);
read(depend);
read(mar)

end
end.
{((recordl, <input, output> , {}) ,

«(s,<>,<>,0)
(1,<(i,<!>)>,

({(for..to..do,l),(begin, end,2),(with..do,l) , (. ,1)},
{(1,1), (i,l)»),(2,o,

<i,12>,
({>,
{(12,1)})),

(3, < (student,<student,input”,i>),(input*,<input>),(i,<i>)>,
({(.,1).([],!).(read,1).((),!)},
{(last,1),(i. 1),(pname,1)})) .

(S,<(i,<!>)>,
({(;.!)}.
{(1.1).(i,l)})),

(6,<>,<i,10>,
({},
{(10.1)})).

(7,<(student,<student,input*,i>),(input*,<input>),(i,<i>)>,
({(..1).([].!).(read,1).(0.1)}.
{(first, 1),(i,1).(pname, 1)})).

(10,<(student,<student,input*>) , (input* . <input>) , (i ,'•!>)>,
({(;.2)}_
{(l,l),(i,l),(init,l),(pname. 1)})),

(ll.o.<i,20>,
({}.
{(20,1)})).

(12,<(student,<student,input*,i>),(input*,<input>),(i,<i>)>,
({(.,1),([],!),(read.1).(0,1)},
{(street,1),(i,1),(paddress, 1)})) ,

(14^<(i,<!>)>.
({(;,!)}.
{(1,1),(i.l)})).

(15,0,
<i,20>,
({}.
{(20.1)})),

person

198

(16^<(student,<student,input*,i>),(input*,<input>),(i,<i>)>,
«(.,1),(□,!),(read.1),((),!)}.
{(cities,1),(i,1),(paddr ess, 1)})).

(20,<(student,<student,input*>),(input*,<input>),(student,<student,input*>) ,
(input*,<input>),(student,<student,input*>),(input*,<input>)>,

«(;,3)},
{(mar,1),(depend,l),(3sn,l)}))

(t,<>,<>,0)},
{(s,l),(1,2),(2,3),(3,2),(2,5),(5,6),(6,7),(7,6),(6,10),(10,11),
(11,12),(12,11),(11,14),(14,15),(15.16).(16,15),(15,20),(20,t)},
S.
t))}

program record2(input.output);
type name = record

last : packed array[1..12] of char;
first : packed array[1..10] of char;
init : char

end;
address = record

street : packed array[1..20] of char;
cities : packed array[1..20] of char

end;
= record

pname : name;
paddress : address;
ssn : integer;
depend : integer;
mar : boolean end;

var student : person;
i : integer;

begin
with student do
begin

with pname do
begin

for i := 1 to 12 do
read(last [i]);for i := 1 to 10 do
re ad(f irst[i]);

read(init);
end;

with paddress do
begin

for i := 1 to 20 do
read(street [i])•

for i := 1 to 20 do
read(cities[i]);

end;
read(ssn);
read(depend);
read(mar)

end
end.
{((record2,<input,output>,{}) .
«(s,<>,<>,0)

■«

199

(1,<(i,<1>)> ,
({(for..to..do,1),(begin..end,3),(with. . do, 2) , (. , 1)},
{(1,1),(i.l)})).

(2,0,
<i,12>,
({},
{(12,1)})),

(3,<(student,<student,input*,i>),(input*,<input>),(i,<i>)>,
({([].!).(read.1).((),!)},
{(i.l).(last,1)})).

(5,<(i,<!>)>,
({(;,!)},
{(1,1),(i.l)})),

(6,<>.
<i,10>.
({},
{(10,1)})).

(7,<(student,<student,input*,i>),(input*,<input>),(i,<i>)>,
({([], 1) , (read, 1) ,((), 1)},
{(i.l),(first,1)})),

(11,<(student,<student,input*>),(input*,<input>),(i,<1>)>,
({(,.3)}.
{(1,1),(i.l),(init,1),(paddress,1)})),

(12,0,
<i,20>,
({}.
{(20,1)})),

(13,<(student,<student,input*,i>),(input*,<input>),(i,<i>)>,
({([).!),(read,1),(0.1)}.{(i,1),(street,1)})),

(15^<(i,<!>)>,
({(;.!)}.
{(1.1),(i.l)})).

(16,0.
<i,20>,
({},
{(20,1)})).

(17,<(student,<student,input*,i>),(input*,<input>),(i,<i>)>,
({([].!).(read.1).(0.1)}.
{(i.l),(cities.1)})).

(22,<(student,<student,input">),(input*,<input>).(student.<student.input*>),
(input*,<input>),(student,<student.input*>).(input*,<input>)>,

({(;.4)}.
{(mar,1),(depend,l),(ssn,l)}))

(t, o,o,0)},
{(s.l).(1.2),(2.3),(3,2).(2.5).(5.6).(6.7).(7.6).(6.11),(11,12).
(12,13),(13,12),(12,15).(15,16),(16.17).(17.16).(16,22),(22,t)}.

tj)}
program record3(input,output);

m

1)})).

200

s
d

end
end.
{((records,<input,output>,{}),

({(s,0,0,0)
(l,<(i,<!>)>,

({(for.. to. .do, 1) , (begin.. end.2), (with..do,1),(.,1)},
{(1,1), (i . 1)»).

(2,<>,<i,20>,
({},
{(20.1)})),

(3,<(students,<students,input",i>),(input",<input>).(i,<i>)>,
({([],!). (read, 1) , (0.1)}.
{(i.l).(name, 1)})).

(5,<(i,<!>)>,
({(;,!)}.
{(1.1).(i.l)})).

(6,0,
<i.30>,
({}.
{(30.1)})).

(7,<(students,<students,input",i>),(input",<input>).(i, <i>)>,
({(□,1).(read,1).(0.1)}.
{(i,1).(address,1)})),

(9.0.

type nametype = packed array [1..20] of char;
addresstype = packed array [1..30] of char;
status = (m,s,d);
person = record

name : nametype;
address : addresstype;
case tag : status of

: (spousename : nametype;
children : integer);

: (sex : char);
: (ddate : packed array[1..8] of char;

children : integer)
end;

var tagg : status;
employee : person;
students : array[1..100] of person;

begin
with students do
begin

for i := 1 to 20 do
read(name[i]);

for i := 1 to 30 do
read(address[i]);

if tag = m then
writeln(spousename.children)

else if tag = s then
writeln(sex)

else if tag = d then
writein(ddate,children);

201

end;
var tagg : status;

employee : person;
students : array[1..100] of person;

begin
with students do
begin

for i := 1 to 20 do
read(name [i]);

for i := 1 to 30 do
read(address[i]);

case tag of
m : writeln(spousename,children);
s : writein(sex);

<students,m>,
«(;,!)},
{(tag,!),(m,1)})),

(10,<(output,<output,students,students>),(output",<students>),(output,<output,end-of-
line>)>,

({(,,1),(writein,1),(0,1)1,
{(spousename,1),(children,1)})),

(ll.o.<students,s>,
({(=,1),(if•.then,1),(else,1)},
{(tag,1),(s,1)})),

(12,<(output",<students>),(output,<output.output">),(output,<output,end-of-line>)>,
({(writein,1).(0,1)1,{(sex.l)})),

(13,<>,
<students,d>,
({(=,1),(if..then,1),(else,1)},{(tag,1),(d,1)})),

(14,<(output,<output,students,students>),(output*,<students>),(output,<output. end-of-
line>)>,

({(,,1) . (writein,1), (0,1),(;,1)},{(ddate,1),(children,1)}))
(t,o,<>,0)},

{(s.l),(1,2),(2,3),(3,2),(2.5),(5,6),(6.7).(7,6),(6,9),(13,14).
(11,12),(11,13),(9,10),(10,t),(9,11),(12,t),(14,t),(13.t)},

t))}
program record4(input,output);
type nametype = packed array [1..20] of char;

addresstype = packed array [1..30] of char;
status = (m,s,d);
person = record

name : nametype;
address : addresstype;
case tag : status of

m : (spousename : nametype;
children : integer);

s : (sex : char);
d : (ddate : packed array[1..8) of char;

children : integer)

i

1)})).

202

d : writein(ddate,children);endend end.
{((record4,<input,output*,{}),

({(s,0,0,0)
(1,<(i,<!>)>,

({(for..to. do,l),(begin..end,2),(with..do,l),(.,1)},
{(1.1).(i.l)})),

(2.0,<i,20>,
({},{(20,1)})),

(3,<(students,<students,input*,i>),(input*,<input>),(i,<i>)>,
({([].1),(read.1),(0,1)},
{(i,l),(name.l)})),

(5,<(i,<!>)>,<>.({(;,!)},
{(1,1),(i.l)})).(6,<>,<i,30>,
({}.{(30.1)})),

(7,<(students,<students,input*,i>),(input*,<input>).(i,<i>)>.
({([], 1) , (read, 1) ,((), 1)},
{(i,1),(address,1)})),

(9,<>,<students>,
({(;.!)}.{(tag.l)})),

(10,<(output,<output,students,students*),(output*.<students*).(output.<output,end-of-
line*)*,

({(,,1),(writein,1),((),1)}.{(spousename,1),(chiIdren,l),(m:,l)})),
(11,<(output*,<students>),(output,<output,output"*),(output,<output,end-of-line*)*,

({(writein, 1),((),1),(;,1)}.
{(sex.l).(s:.1)})),

(12,<(output,<output .students.students*),(output*.<students*).(output.<output.end-of-
line*)*,

({(,,1).(writeIn,!),(().!),(:,2)},{(ddate,1),(children,1),(d:.1)}))
(t,o.o.O)},

{(s.l),(1.2).(2.3),(3,2),(2.5).(5.6).(6.7).(7.6).(6.9).(9,10),(10,t),(9,11),(ll,t),(9.12).(12,t)},
tj)}

c User’s Manual

NAME

srp - generator of StandardRep for Pascal programs

SYNOPSIS

srp pascalfilename

DESCRIPTION

203

srp generates a textual form of the StandardRep using the set, sequence,

and tuple notation of |1] from an ISO Standard Pascal program. The iden­

tifiers and operators in the source program are mapped directly to the

StandardRep without any changes. The Pascal input file must contain a

syntactically correct Pascal program and must have only standard Pascal

features. To deal with the non-standard features of Pascal programs, we

have to modify the source program of the generator. Since the genera­

tor does not. detect syntactical errors, if there is a syntax error in input

programs, the generator may produce a set of Unit RepType's only for pro­

cedure units which do not have errors and are processed before the error

occurs. Hence, we have to make sure that we have an input program which

is error-free and solely based on the Standard Pascal. Otherwise, we have to

revise the generator source program for the non-standard features or for the

syntactical error-detection. 'Phus we suggest that the user must check the

input Pascal program by a pascal compiler before running the srp. The srp

produces the output on the corresponding file suffixed ,sr which contains

the StandardRep for the input Pascal program.

